The Effect of Suspended Load on the Lower Discharge of Large Dams using Flow-۳D Numerical Model

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHWE-2-1_009

تاریخ نمایه سازی: 3 اردیبهشت 1404

چکیده مقاله:

Bottom outlets in dams are critical structures for regulating flow and releasing sediment, particularly during floods and emergency situations. These systems play a vital role in ensuring dam safety and effective water management. While previous studies have primarily focused on flow simulation without considering suspended sediments, this omission overlooks a significant factor influencing outlet performance under flood conditions. Suspended sediments increase the density of the flow, which can substantially alter the hydraulic characteristics of the outlet system. This study investigates the effect of suspended sediment concentration on the hydraulic efficiency of bottom outlets, using Flow-۳D software to model the flow dynamics within the bottom outlet of Siazakh Dam. Siazakh Dam is located ۷ km south of Diwandara and ۹۵ km north of Sanandaj city in the Kurdistan province of Iran. Initial calibration and validation of the model were performed using laboratory data. Simulations were conducted with suspended sediment concentrations of ۳۰۰۰, ۶۰۰۰, ۹۰۰۰, and ۱۲,۰۰۰ ppm to examine the impacts on discharge and key hydraulic parameters such as flow velocity and pressure distribution. The results reveal that as sediment concentration increases, the discharge rate decreases significantly due to higher flow density, which alters both velocity profiles and pressure distributions. At higher concentrations, discharge reduction exceeded ۲۰%, accompanied by notable variations in pressure and flow velocity across different sections of the outlet system. This study highlights the importance of accounting for sediment load in the design and operational management of dam outlet systems, as this factor can significantly influence performance. Future studies could further investigate the impact of varying sediment shapes and sizes on system efficiency.

نویسندگان

Seyed Mahmoud Samavaki

MSc Student, Department of Water Engineering, Faculty of Agriculture, Takestan Branch, Islamic Azad University, Takestan, Iran Islamic Azad University, Takestan Branch, Takestan, Iran.

Mohammad Amel Sadeghi

Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Takestan Branch, Islamic Azad University, Takestan, Iran.

Mohammadreza Asli Charandabi

BSc Graduated, School of Engineering, Damghan University, Damghan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Aminian, P., Ahmadi, A., & Emamgholizadeh, S. (۲۰۱۹a). Experimental investigation ...
  • Aminian, P., Ahmadi, A., & Emamgholizadeh, S. (۲۰۱۹b). Experimental Study ...
  • Numerical Study of the Effects of Inlet Geometry on the Performance of the Sediment Bypass Tunnel using SSIIM Numerical Model [مقاله ژورنالی]
  • Arman, A., Fathi-Moghadam, M., Samadi, H., & Emamgholizadeh, S. (۲۰۰۹). ...
  • Barnea, D., Shoham, O., Taitel, Y., & Dukler, A. (۱۹۸۵). ...
  • Borodina, L. K. (۱۹۶۹). Aeration behind low-level gates. Power Technology ...
  • Bureau, O. R. (۱۹۷۷). Design of small dams. Govt. Print. ...
  • Dargahi, B. (۲۰۱۰). Flow characteristics of bottom outlets with moving ...
  • Emamgholizadeh, S., Bateni, S. M., & Jeng, D.-S. (۲۰۱۳). Artificial ...
  • Emamgholizadeh, S., Bateni, S. M., & Nielson, J. R. (۲۰۱۸). ...
  • Emamgholizadeh, S., Bina, M., Fathi-Moghadam, M., & Ghomeyshi, M. (۲۰۰۶). ...
  • Emamgholizadeh, S., & Fathi-Moghdam, M. (۲۰۱۴). Pressure flushing of cohesive ...
  • Emamgholizadeh, S., Khademi, N., & Hosini, H. (۲۰۲۰). Prediction of ...
  • Emamgholizadeh, S., & Samadi, H. (۲۰۰۸). Desilting of deposited sediment ...
  • Fathi-Moghadam, M., Arman, A., Emamgholizadeh, S., & Alikhani, A. (۲۰۱۱). ...
  • Heller, V., Hager, W. H., & Minor, H. E. (۲۰۰۵). ...
  • Jabary, A., Hosseini, A., Haghiabi, A. H., Emamgholizadeh, S., & ...
  • Khatsuria, R. M. (۲۰۰۴). Hydraulics of spillways and energy dissipators. ...
  • Liu, T. (۲۰۱۴). Modelling air―water flows in bottom outlets of ...
  • Manual, F. D. U. (۲۰۱۱). Flow۳D user manual, v۹. ۴.۲, ...
  • Rajaratnam, N., & Beltaos, S. (۱۹۷۷). Erosion by impinging circular ...
  • Razavi, A. R., & Ahmadi, H. (۲۰۱۷). Numerical modelling of ...
  • Sharma, K. P., Sharma, S., Sharma, S., Sharma, P. K., ...
  • Taghavi, M., & Ghodousi, H. (۲۰۱۵). Simulation of flow suspended ...
  • Te Chow, V. (۱۹۵۹). Open channel hydraulics. McGraw-Hill ...
  • Wilcox, D. C. (۱۹۹۸). Turbulence modeling for CFD. DCW Industries ...
  • Yakhot, V., & Orszag, S. A. (۱۹۸۶). Renormalization group analysis ...
  • نمایش کامل مراجع