Safe and Efficient Traffic Control with Constrained Reinforcement Learning Models
محل انتشار: اولین کنفرانس ملی دو سالانه کاربرد هوش مصنوعی در کنترل ترافیک با تاکید بر مدیریت شهری و جاده ای
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 46
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AITC01_020
تاریخ نمایه سازی: 30 فروردین 1404
چکیده مقاله:
Traffic congestion remains a significant challenge in modern urban planning, leading to increased travel times, fuel consumption, and greenhouse gas emissions. While traditional traffic management systems often fail to adapt to dynamic traffic patterns, Reinforcement Learning (RL) offers a promising solution by enabling adaptive and intelligent traffic control. However, ensuring safety and efficiency in RL-based traffic systems remains a critical challenge, especially when dealing with real-world constraints such as pedestrian safety, speed limits, and emergency vehicle prioritization. The study develops a safe RL framework that integrates domain-specific constraints using techniques such as reward shaping, Lagrangian relaxation, and constrained policy optimization.
کلیدواژه ها:
نویسندگان
Sajed Dadashi
Department of Computer Engineering, Roudsar and Amlash Branch, Islamic Azad University, Roudsar, Iran
Ali Aghasi
Department of Computer Engineering, University of Isfahan, Isfahan, Iran