Enhancing Porosity Prediction Accuracy in Oil Reservoirs: Evaluating Hybrid Machine Learning Approaches Integrating Well Log and Core Data

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 143

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JESPHYS-50-4_008

تاریخ نمایه سازی: 27 فروردین 1404

چکیده مقاله:

Accurate prediction of porosity holds significant importance across various domains within the oil and gas sector, encompassing activities such as reservoir delineation, well design, and production enhancement. However, conventional methodologies often encounter difficulties in capturing the intricate relationships among diverse data streams and porosity metrics. This study introduces a novel hybrid model framework aimed at refining the precision and resilience of porosity forecasts by integrating multiple machine learning methodologies and exploiting complementary data modalities. This hybrid architecture enables flexible and intricate integration of diverse models and data sources, potentially leading to enhanced overall porosity prediction accuracy. Notably, the proposed model incorporates several innovative elements, including the amalgamation of ensemble techniques and deep learning models tailored for sequential data, as well as the utilization of complementary data sources, such as well log and core data, to facilitate automatic feature learning and representation, thereby bolstering robustness and generalization capabilities. Experimental outcomes underscore the hybrid model's potential to achieve notable prediction accuracies, with R-squared values surpassing ۰.۹۳ on log data and ۰.۸۸ on core data sets, outperforming individual models. The model also exhibits commendable robustness and training efficiency, leveraging advanced methodologies such as ensemble techniques. In conclusion, this study underscores the promise of hybrid machine learning models as dependable tools for porosity prediction from core data. The insights gleaned from this research hold the potential to advance the understanding and optimization of porosity forecasting, thereby facilitating the formulation of more efficient reservoir management strategies.

کلیدواژه ها:

نویسندگان

Amir Reza Mehrabi

Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Majid Bagheri

Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.

Majid Nabi Bidhendi

Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.

Ebrahim Biniaz Delijani

Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Mohammad Behnood

Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbas, M. A., Al-Mudhafar, W. J., & Wood, D. A. ...
  • Ahmadi, M. A., Ahmadi, M. R., Hosseini, S. M., & ...
  • Alyaev, S., & Elsheikh, A. H. (۲۰۲۲). Direct multi-modal inversion ...
  • Al-Khafaji, H., Qingbang, M., Wahib, Y., Samer, W., Wakeel, H., ...
  • Al Shalabi, L., & Shaaban, Z. (Eds.). (۲۰۰۶). Normalization as ...
  • Bittar, M., Wang, S., Wu, X., & Chen, J. (۲۰۲۱). ...
  • Carey, C., Boucher, T., Mahadevan, S., Bartholomew, P., & Dyar, ...
  • Dargi, M., Khamehchi, E., & Mahdavi, K. J. (۲۰۲۳). Optimizing ...
  • Esteghlal, S., Samadi, S. H., Hosseini, S. M. H., & ...
  • Fernando, J. (۲۰۲۳, April ۰۸). R-Squared. Investopedia. https://www.investopedia.com/terms/r/r-squared.asp ...
  • Fu, L.-Y. (۲۰۰۳). An Information Integrated Approach for Reservoir Characterization. ...
  • Fu, L., Lin, T., Li, W., & Ma, S. (۲۰۲۲). ...
  • Gamal, H., & Elkatatny, S. (۲۰۲۲). Prediction model based on ...
  • Gupta, A., Pandey, A., Kesarwani, H., Sharma, S., & Saxena, ...
  • Hadavimoghaddam, F., Ostadhassan, M., Sadri, M. A., Bondarenko, T., Chebyshev, ...
  • Hassanzadeh, P., Hezarkhani, A., Rabbani, A. R., & Khajooie, S. ...
  • Hussain, W., Miao. L., Muhammad. A., Syed. M. H., Sajid. ...
  • Hussain, W., Ehsan, M., Pan, L., Wang, X., Ali, M., ...
  • Jo, H., Cho, Y., Pyrcz, M. J., Tang, H., & ...
  • Jo, J.-M. (۲۰۱۹). Effectiveness of normalization pre-processing of big data ...
  • Kirch, A., Celaschi, Y. M., de Almeida, J. M., & ...
  • Li, Z., Xie, Y., Li, X., & Zhao, W. (۲۰۲۱). ...
  • Mahzad, M., & Bagheri, M. (۲۰۲۵). Predictive reconstruction of missing ...
  • Mahzad, M., & Riahi, M. A. (۲۰۲۴). Reservoir characterization reimagined: ...
  • Maniscalco, R., Fazio, E., Punturo, R., Cirrincione, R., Di Stefano, ...
  • Moosavi, N., Bagheri, M., Nabi-Bidhendi, M., & Heidari, R. (۲۰۲۳). ...
  • Munir, M. N., Zafar, M., & Ehsan, M. (۲۰۲۳). Comparative ...
  • Nasseri, A., & Mohammadzadeh, M. (۲۰۱۷). Evaluating distribution pattern of ...
  • Pan, J., Zhuang, Y., & Fong, S. (Eds.). (۲۰۱۶). The ...
  • Shiri, Y., Moradzadeh, A., Shiri, A., & Chehrazi, A. (۲۰۱۱). ...
  • Stanton, J. M. (۲۰۰۱). Galton, Pearson, and the Peas: A ...
  • Subasi, A., El-Amin, M. F., Darwich, T., & Mubarak. D. ...
  • Sun, J., Zhang, R., Chen, M., Chen. B., Wang. X., ...
  • Sun, Y., Pang, S., Zhang, J., & Zhang, Y. (۲۰۲۴). ...
  • Tam, T. N. T., & Thanh, D. H. T. (۲۰۲۳). ...
  • Talebkeikhah, M., Sadeghtabaghi, Z., & Shabani, M. (۲۰۲۱). A comparison ...
  • Tiab, D., & Donaldson, E. C. (۲۰۱۶). Chapter ۳ - ...
  • Wu, L., Dong, Z., Li, W., Jing, C., & Qu, ...
  • Yousefmarzi, F., Haratian, A., Mahdavi Kalatehno, J., & Keihani Kamal, ...
  • Yu, S., Zhu, K., & Diao, F. (۲۰۰۸). A dynamic ...
  • Zamani, M. G., Nikoo, M. R., Rastad, D., & Nematollahi, ...
  • Zou, Y., Chen, Y., & Deng, H. (۲۰۲۱). Gradient Boosting ...
  • نمایش کامل مراجع