Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols
محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 84
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSAIC03_087
تاریخ نمایه سازی: 20 فروردین 1404
چکیده مقاله:
In this manuscript, we explore the application of model-free reinforcement learning in optimizing secure multiparty computation (SMPC) protocols. SMPC is a crucial tool for performing computations on private data without the need to disclose it, holding significant importance in various domains, including information security and privacy. However, the efficiency of current protocols is often suboptimal due to computational and communicational complexities. Our proposed approach leverages model-free reinforcement learning algorithms to enhance the performance of these protocols. We have designed a reinforcement learning model capable of dynamically learning and adapting optimal strategies for secure computations. Our experimental results demonstrate that employing this method leads to a substantial reduction in execution time and communication costs of the protocols. These achievements highlight the high potential of reinforcement learning in improving the efficiency of secure multiparty computation protocols, providing an effective solution to the existing challenges in this field.
کلیدواژه ها:
نویسندگان
Javad Sayyadi
Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran
Hamid Sayyadi
Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran
Mahdi Nangir
Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran
Mahmood Mohassel Feghhi
Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran