سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 67

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

PSAIC03_087

تاریخ نمایه سازی: 19 فروردین 1404

چکیده مقاله Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols

In this manuscript, we explore the application of model-free reinforcement learning in optimizing secure multiparty computation (SMPC) protocols. SMPC is a crucial tool for performing computations on private data without the need to disclose it, holding significant importance in various domains, including information security and privacy. However, the efficiency of current protocols is often suboptimal due to computational and communicational complexities. Our proposed approach leverages model-free reinforcement learning algorithms to enhance the performance of these protocols. We have designed a reinforcement learning model capable of dynamically learning and adapting optimal strategies for secure computations. Our experimental results demonstrate that employing this method leads to a substantial reduction in execution time and communication costs of the protocols. These achievements highlight the high potential of reinforcement learning in improving the efficiency of secure multiparty computation protocols, providing an effective solution to the existing challenges in this field.

کلیدواژه های Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols:

نویسندگان مقاله Utilizing Model-Free Reinforcement Learning for Optimizing Secure Multi-Party Computation Protocols

Javad Sayyadi

Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran

Hamid Sayyadi

Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran

Mahdi Nangir

Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran

Mahmood Mohassel Feghhi

Faculty of Electrical & Computer Engineering, University of Tabriz, Tabriz, Iran