An algorithm to predict shear wave velocity using well log data and deep learning algorithms

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMGE-59-1_004

تاریخ نمایه سازی: 19 فروردین 1404

چکیده مقاله:

Shear wave velocity (Vs) is one of the most critical parameters for determining geomechanical properties to predict reservoir behavior. Determining shear wave velocity (Vs) through methods, such as core analysis requires a significant amount of time and cost. Additionally, due to the scarcity of core samples and the heterogeneity of reservoir rocks, determining this parameter using conventional methods is often not very accurate. While many empirical methods have been developed for estimating Vs, their applicability across different regions is often limited. Therefore, estimating Vs using conventional well logs is crucial. An efficient method for predicting Vs is the use of intelligent algorithms, which offer low-cost and accurate predictions. It is feasible to predict Vs using well log data. In this study, Vs was predicted using empirical relations and some deep learning (DL) algorithms in one of the hydrocarbon fields in southern Iran. In order to use the DL methods, the autoencoders deep network was used to select the effective features in predicting the Vs, and then, with multi-layer perceptron (MLP), long-short term memory (LSTM), convolutional neural network (CNN), and convolutional neural network + long-short term memory (CNN+LSTM) networks, Vs was predicted. The performance of these models was tested by a blind data set that the models had not seen before. Furthermore, the results were checked and evaluated by set of statistical measures, including MAE, MAPE, MSE, RMSE, NRMSE, and R۲ values calculated for train, test, and blind datasets. It was found that all four deep learning models used in this study well performed effectively for Vs prediction, but the combined CNN+LSTM model results indicated that the least root mean squared error (RMSE) was equal to ۰.۰۲۴۳ (۲.۴۳%) and the best coefficient of determination (R۲) equal to ۰.۹۹۹۳ for blind dataset. We found that Vs can be predicted from a series of well log data by considering their variation trends and context information with depth by means of DL algorithms. This approach is particularly suitable for problems involving various series data, such as Vs prediction. By comparing the results obtained from DL algorithms with those from conventional empirical methods and processing real petrophysical well log data, it can be concluded that deep learning algorithms not only offer more predictive accuracy and robustness but also hold promising use prospects in Vs prediction studies. The results showed that the used CNN and CNN+LSTM networks, as new deep learning algorithms, are able to predict Vs adequately.

نویسندگان

Farhad Mollaei

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Ali Moradzadeh

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Reza Mohebian

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Castagna, J.P., Batzle, M.L., Eastwood, R.L., (۱۹۸۵). Relationships between compressional ...
  • Eskandari, H., Rezaee, M.R., Mohammadnia, M., (۲۰۰۴). Application of multiple ...
  • Coello, C.C., (۲۰۰۷). Evolutionary algorithms for solving multiobjective problems: Springer ...
  • Bengio, Y., Simard, P., Frasconi, P. (۱۹۹۴). Learning long-term dependencies ...
  • Krizhevsky, A., Sutskever, I., E. Hinton, G. (۲۰۱۷). ImageNet classification ...
  • Kacprzyk. J., (۲۰۰۸). Studies in Computational Intelligence, Volume ۱۲۱ ...
  • He. K, X. Zhang, S. Ren, and J. Sun. (۲۰۱۶). ...
  • Rezaee, MR., Kadkhodaei, A., Barabadi, A. (۲۰۰۷). Prediction of shear ...
  • Rajabi, M., Bohloli, B., Hangar, E. (۲۰۱۰). Intelligent approaches for ...
  • Moatazedian, I., Rahimpour-Bonab, H., Kadkhodaie-Ilkhchi, A., & Rajoli, M. (۲۰۱۱). ...
  • Asoodeh, M., Bagheripour, P. (۲۰۱۲). Prediction of compressional, shear, and ...
  • Asoodeh, M., Bagheripour, P. (۲۰۱۳). Neuro-fuzzy reaping of shear wave ...
  • Asoodeh, M., Bagheripour, P. (۲۰۱۴). ACE stimulated neural network for ...
  • Maleki, Sh., Moradzadeh, A., Ghavami Riabi, R., Gholami, R., Sadeghzadeh, ...
  • Gholami, R., Moradzadeh, A., Rasouli, V., Hanachi, J. (۲۰۱۴). Shear ...
  • Akhundi, H., Ghafoori, M., Lashkaripour, G.R. (۲۰۱۴). Prediction of shear ...
  • Kadkhodaie-Ilkhchi., A. (۲۰۱۵). A systematic approach for estimation of reservoir ...
  • Bagheripour., P., Gholami., A., Asoodeh., M., & Vaezzadeh-Asadi., M. (۲۰۱۵). ...
  • Al-Dousari, M., Garrouch, A.A., Al-Omair, O. (۲۰۱۶). Investigating the dependence ...
  • Singh, S., Kanli, A.I. (۲۰۱۶). Estimating shear wave velocities in ...
  • Behnia, D., Ahangari, K., Moeinossadat, S. R. (۲۰۱۷). Modeling of ...
  • Shiroodi, SK., Ghafoori, M., Ansari, H. R., Lashkaripour, G., Ghanadian, ...
  • Mehrgini, B., Izadi, H., Memarian, H. (۲۰۱۹). Shear wave velocity ...
  • Alkinani, H.H., AL hamidi, S., Dunn norman, R. E., Flori, ...
  • Zhang, Y., Zhong, H. R., Wu, Z., Zhou, H., Ma, ...
  • Wood, DA. (۲۰۲۰). Bakken stratigraphic and type well log learning ...
  • Gholami, A., Seyedali, S M., Ansari, H. R. (۲۰۲۰). Estimation ...
  • Wang, J., Cao, J., Liu, Z., Lei, X., Zhou, X. ...
  • Ghorbani, H., Davoodi, S., Davarpanah, A. (۲۰۲۱). Accurate determination of ...
  • Olayiwola, T., Sanuade, OA. (۲۰۲۱). A data-driven approach to predict ...
  • Ebrahimi, A., Izadpanahi, A., Ebrahimi, P., Ranjbar, A., (۲۰۲۲). Estimation ...
  • Gholami Vijouyeh, A., Kadkhodaie, A., Hassanpour Sedghi, M., (۲۰۲۲). A ...
  • Nasrnia, B., Falahat, R., Kadkhodaie, A., Gholami Vijouyeh, A., (۲۰۲۳). ...
  • Alavi, A.H., Gandomi, A.H., Mollahasani, A., Heshmati, A.A.R., Rashed, A., ...
  • Hochreiter, S., Schmidhuber, J. (۱۹۹۷). Long short-term memory. Neural Comput. ...
  • Gers, F.A., Schraudolph, N.N., Schmidhuber, J. (۲۰۰۳). Learning precise timing ...
  • Biranvand, N., Kikhai, M., Roein. (۲۰۱۹). presenting a method in ...
  • Sezavar, A., Fersi, H., Mohamadzadeh, S. (۲۰۱۵). Image retrieval using ...
  • Anemangely, M., Ramezanzadeh, A., Tokhmechi, B. (۲۰۱۷). Shear wave travel ...
  • Kingma, D.P., Ba, J. (۲۰۱۴). Adam: A Method for Stochastic ...
  • Duchi, J., Hazan, E., Singer, Y. (۲۰۱۱). Adaptive subgradient methods ...
  • Tieleman, T., Hinton, G. (۲۰۱۲). Lecture ۶.۵-rmsprop: divide the gradient ...
  • نمایش کامل مراجع