A Machine Learning Approach to Assessing Audit Quality in Company with Non-Switching Auditors: Random Forest Classifier Model
محل انتشار: فصلنامه مطالعات پردازش دانش، دوره: 5، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 90
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJKPS-5-1_003
تاریخ نمایه سازی: 14 فروردین 1404
چکیده مقاله:
For many years, legislators have been concerned that the change in the auditor, along with the incentive to buy the audit opinion, can have a negative impact on the quality of the audit. Therefore, in all the researches conducted in this field, the audit quality after the change of auditor has been investigated. This study investigates the effect of auditor change probability on audit quality using a Random Forest Classifier model. In this research, using the machine learning technique and Random Forest Classifier model, the probability of auditor change in companies listed on the Tehran Stock Exchange for the years ۲۰۰۳ to ۲۰۲۱ and the effect of this probability on audit quality in companies without a change in auditors have been reviewed. The results show that the companies in which the probability of auditor change is high; They have a lower audit quality. In the following, according to the hypotheses related to the reduction of audit costs in large companies based on the familiarity discount framework, the above result has been analysed separately in large and small companies. The results show that larger companies, where there is a possibility of changing auditors, experience a greater decrease in audit quality. Such results indicate that, by using the model presented in this research, legislators and investors can identify the behaviours that occur by auditors and under the pressure of audited companies to obtain desirable results.
کلیدواژه ها:
Audit Quality ، Machine Learning ، Auditor switch ، Non-Switching Firms ، Random Forest Classifier Model Ensemble methods
نویسندگان
Mostafa Abdi
Ph.D. Candidate, Department of Accounting, Khomein Branch, Islamic Azad University, Khomein, Iran.
Azar Moslemi
Assistant Professor, Department of Accounting, Khomein Branch, Islamic Azad University, Khomein, Iran.
Mohsen Rashidi
Assistant Professor, Department of Economic and Administration Science Faculty, Lorestan University, Lorestan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :