Enhance Learning Performance Through Enriching Video Content Based on Ego State Therapy
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 8، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-8-1_001
تاریخ نمایه سازی: 29 اسفند 1403
چکیده مقاله:
One of the most important aspects of learning is attention. This is even more pronounced in online education due to the instructor’s need for sufficient control over the learner’s environment. This study aims to identify the pattern of changes in the cognitive state of learners, from unconsciousness to consciousness. By observing the brain’s response while learners watch micro videos, we sought to understand the impact of these ego states on learners’ performance in E-Learning environments. Our findings suggest that learners' ego states significantly impact their learning performance. The first phase aimed to precisely detect the transition point from the unconscious to the conscious state. In the second phase, we tried to differentiate between these two states by comparing their learning performance. Finally, the obtained results led us to believe that learning outcomes are subject to a significant increase when the brain state changes. These findings emphasize the importance of early engagement strategies in online learning, as improving the initial phase of content delivery significantly increases overall learning outcomes. By understanding the transition between different ego states, educational content authors would create more effective learning materials that maintain continuous learner engagement.
کلیدواژه ها:
نویسندگان
Mohsen Mahmoudi
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran ,Iran
Fattaneh Taghiyareh
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
Abtin Hidaji
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :