The Prediction of Low and High-Risk Zones of Tehran during COVID-۱۹ by Using the Random Forest Algorithm
محل انتشار: مجله بین المللی علوم انسانی، دوره: 29، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 86
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EIJH-29-4_002
تاریخ نمایه سازی: 17 اسفند 1403
چکیده مقاله:
The Coronavirus disease (Covid-۱۹) is one of the infectious and contagious ones called ۲۰۱۹-nCoV acute respiratory disease. Its outbreak was first reported on December ۳۱, ۲۰۱۹, in the Chinese city of Wuhan that quickly spread throughout the country within a few weeks and spread to several other countries, including Italy, the United States, and Germany, within a month. This disease was officially reported in Iran on February ۱۹, ۲۰۲۰. It is important to detect and analyze high risk zones and establish regulations according to the data and the analyses of Geographic Information System (GIS) in epidemiological situations. Meanwhile, the GIS, with its location nature, can be effective in preventing the breakdown of Covid-۱۹ by displaying and analyzing the dangerous zones where people infected with the disease. In fact, recognizing regions based on the risk of getting the disease can influence social restriction policies and urban movement rules in order to prepare daily and weekly plans in different urban regions. In this applied and analytical research, high and low risk zones of Tehran have been identified by using the random forest algorithm which is used for both classification and regression. The algorithm builds decision trees on data samples and then predicts data from each of them, and finally chooses the best solution. In this research, ۷ effective criteria have been used in the level of risk of regions toward Covid-۱۹ virus, which is: subway paths and bus for rapid transits, hospitals, administrative and commercial complexes, passageways, population densities and urban traffic. After providing the map of high-risk zones of Covid-۱۹, the Receiver Operating Characteristic curve (ROC) has been used for evaluation. The area under the curve (AUC) obtained from ROC shows an accuracy of ۹۸.۸%, which means the high accuracy of this algorithm in predicting high and low zones toward getting the Covid-۱۹ disease.
کلیدواژه ها:
نویسندگان
Najmeh Neysani Samani
Associate Professor, Department of Remote Sensing and Geographical Information System, Faculty of Geography, University of Tehran, Iran
Mehdi Farokh Anari
Department of Remote Sensing and Geographical Information System, Faculty of Geography, University of Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :