Predicting Sediment Transport Rate under Vegetation Cover Using Group Method of Data Handling and New Optimization Algorithms
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 111
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMTE-20-NaN_003
تاریخ نمایه سازی: 8 اسفند 1403
چکیده مقاله:
Developing vegetation cover is one of the practical solutions to alleviate the sediment transfer rate. Predicting the sediment transfer rate in the presence of cover vegetation is a complicated necessary issue for designers due to the complex interaction between sediments and cover vegetation. This study intends to predict the sediment transfer rate (STR) by employing soft computing models based on an experimental study. The primary innovations in this study were the introduction of new and optimized versions of the group method of data handling (GMDH) for predicting sediment transport rate, the use of a new inclusive multiple model for predicting sediment transport rate, and the investigation of the effects of various parameters on the sediment transport rate, such as vegetation cover density. This study used an inclusive multiple model (IMM) as an ensemble model to predict sediment transport in the presence of cover vegetation. Initially, the sediment transport rate was predicted using the individual GMDH models. These outputs were then used to create the final outputs by inserting them into the GMDH model as an ensemble model at the next level. The Honey Badger algorithm (HBA), the rat swarm optimization algorithm (RSOA), the sine cosine algorithm (SCA), and the particle swarm optimization algorithm (PSOA) were used to train the GMDH model. The diameter of the sediments, the diameter of the stems, the density of vegetation cover, the wave height, the wave velocity, the cover height, and the wave force were used as inputs to the models. The IMM's mean absolute error (MAE) was ۰.۱۴۵ m۳/s, while the MAEs for GMDH-HBA, GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and GMDH in the testing level were ۰.۱۷۶ m۳/s, ۰.۳۱۲ m۳/s, ۰.۳۶۷ m۳/s, ۰.۴۹۸ m۳/s, and ۰.۶۱۲ m۳/s, respectively. The Nash–Sutcliffe coefficient (NSE) of IMM, GMDH-HBA, GMDH-RSOA, GMDH-SCA, GMDH-PSOA, and GHMDH were ۰.۹۵ ۰.۹۳, ۰.۸۹, ۰.۸۶, ۰.۸۲, and ۰.۷۶, respectively. Additionally, this study demonstrated that vegetation cover decreased sediment transport rate by ۹۰%. The overall results indicated that the IMM and GMDH-HBA models could accurately predict sediment transport rates.
کلیدواژه ها:
Sediment transport rate ، Coastal regions ، Forest cover ، Group method of data handling ، Optimization Algorithms
نویسندگان
elham Ghanbari Adivi
Associated professor, Shahrekord university
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :