Discovery and Evaluation of Fixed Capital Facility Processes Based on Process Mining Approach: A Case Study of the Bank Loan Acceptance Process in Iran
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 114
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MSEEE-3-4_004
تاریخ نمایه سازی: 2 اسفند 1403
چکیده مقاله:
Fixed capital facility processes have many steps, control points, and approvals with long durations. In this regard, banks with more awareness and knowledge by analyzing and evaluating their processes can do better than their competitors in improving them and providing customer service. To tackle this challenge, process mining is one of the effective and efficient methods for analyzing processes, i.e., discovering and evaluating their quality. This paper aims to find and evaluate the model of the fixed capital facilities acceptance process based on the mentioned method. The proposed six-step method includes event logs preparation, process model discovery, evaluation and compliance checking, results analysis, analysis based on the fuzzy method, and comparison of results. The discovered process model is evaluated based on the quality dimensions of the process model, namely precision, fitness, simplicity, and generalization. Also, the results obtained from different methods are compared with each other. In addition to the discovery of the process model, one of the results was the heuristic algorithm having the best performance in terms of the mentioned criteria, with a value of ۰.۸۳۳. Particularly, it excelled in precision with a value of ۰.۶۵۶. The genetic algorithm, with a value of ۰.۹۴۶, exhibited the best fitness performance. Another result is the superior performance of the fuzzy technique compared to other methods. Furthermore, bottlenecks, activities with the highest repetition in a case, and branches and users with the most significant role in the process were identified.
کلیدواژه ها:
نویسندگان
Ehsan Allah khoshkhoy Nilash
Department of Management, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Mansour Esmaeilpour
Department of Computer Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Behrooz Bayat
Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Alireza Isfandyari Moghaddam
Department of Knowledge and Information Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
Erfan Hassannayebi
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :