تشخیص نشتی در خط لوله نفت با استفاده از تبدیل موجک و ویژگی های آماری همراه با کاربرد شبکه عصبی مصنوعی

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 112

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MME-16-9_013

تاریخ نمایه سازی: 29 بهمن 1403

چکیده مقاله:

نشتی های خط لوله نفت اگر مورد توجه واقع نشود می تواند منجر به خسارت های بزرگی گردد. اولین گام برای مقابله موثر با این نشتی ها، تشخیص محل وقوع آن ها است. در مقاله ی حاضر یک روش جدید آشکارسازی و جداسازی عیوب (FDI) مبتنی بر داده پیشنهاد می شود که نه تنها قادر است وقوع عیب نشتی و محل آن را آشکار سازد بلکه می تواند وخامت (اندازه ی) نشتی را نیز با دقت زیاد تخمین بزند. در مطالعه ی حاضر، خط لوله ی گلخاری- بینک که در جنوب ایران واقع شده، در نرم افزار الگا مدل سازی گردیده است که داده های مورد نیاز برای آموزش سیستم FDI را فراهم می نماید. سناریوهای مختلف نشتی بر مدل اعمال می گردد و نرخ دبی خروجی و فشار ورودی متناظر به عنوان داده های آموزش ثبت می شود. داده های بدست آمده در حوزه ی زمان به حوزه ی موجک انتقال داده می شوند. سپس ویژگی های آماری داده ها از دو حوزه ی موجک و زمان استخراج می گردد. ویژگی های بدست آمده به یک شبکه ی عصبی چندلایه ی پرسپترون (MLPNN) به عنوان سیستم FDI اعمال می گردد. نتایج نشان می دهد که سیستم مبتنی بر ویژگی های آماری موجک عملکرد بهتری نسبت به سیستم مبتنی بر ویژگی های آماری حوزه ی زمان دارد. همچنین سیستم پیشنهادی می تواند محل و وخامت نشتی را با نرخ هشدار غلط (FAR) اندک و نرخ طبقه بندی صحیح (CCR) بسیار زیاد تشخیص دهد.

نویسندگان

مرتضی زادکرمی

Petroleum University of Technology

مهدی شهبازیان

Petroleum university of technology

کریم سلحشور

Petroleum University of Technology