Fuzzy modeling using the similarity-based approximate reasoning system

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-14-1_011

تاریخ نمایه سازی: 17 بهمن 1403

چکیده مقاله:

Just as we humans use many different types of inferential procedures to help us understand things or to make decisions,  there are many different fuzzy logic inferential procedures, including similarity-based approaches. Similarity measures can be seen not only as a general notion but also as a particular family of fuzzy relations which play  crucial roles for the motivation and the whole design of similarity-based reasoning. In the context of similarity-based reasoning, several issues merit concern. One is the representation of implication relation and two is the composition of a fuzzy implication relation with an observed system fact. The others are  continuity and robustness of these systems which are the soul that must be inherited in the newly setup frameworks. Therefore, the purpose of this study is to introduce a new similarity-based approximate reasoning system which is based on introducing a new class of similarity measure on the space of LR-fuzzy numbers. Therefore,  first, a new class of similarity measures is introduced between fuzzy sets. The similarity measure is needed in order to activate rules which are in terms of linguistic variables. Second,  it is proved that the proposed measures satisfy the properties of the axiomatic definition as well as the other properties by a theorem. Next,  we validate the effectiveness of the   proposed similarity measure in a bidirectional approximate reasoning system in order to provide a  nonlinear mapping of fuzzy  input data into fuzzy output data. Finally,  using existing experimental data from Uniaxial Compressive Strength (UCS) testing,  the fuzzy inference system constitutive model is produced to describe the influence of joint geometry (joint location, trace length and orientation) on the UCS of rock. The numerical results will show that the proposed model based on similarity-based approximate reasoning systems has better performance compared with the Mamdani fuzzy inference systems and the  multivariate regression.

نویسندگان

Jalal Chachi

Faculty of Mathematical Sciences and Computer, Department of Statistics, Shahid Chamran University of Ahvaz

Mehdi Jalalvand

Faculty of Mathematical Sciences and Computer, Department of Mathematics, Shahid Chamran University of Ahvaz

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Arkes, J. (۲۰۲۳). Regression analysis: a practical introduction. Routledge. https://doi.org/۱۰.۴۳۲۴/۹۷۸۱۳۵۱۰۱۱۰۹ ...
  • Atanasov, A. B., Zavatone-Veth, J. A., & Pehlevan, C. (۲۰۲۴). ...
  • Bas, E. (۲۰۲۲). Robust fuzzy regression functions approaches. Information Sciences, ...
  • Bas, E., & Egrioglu, E. (۲۰۲۲). A fuzzy regression functions ...
  • Berk, R. A. (۲۰۲۰). Statistical learning as a regression problem. ...
  • Cao, J., Zhou, T., Zhi, S., Lam, S., Ren, G., ...
  • Chachi, J., & Chaji, A. (۲۰۲۱). An owa-based approach to ...
  • A multi-attribute assessment of fuzzy regression models [مقاله ژورنالی]
  • Chachi, J., & Taheri, S. M. (۲۰۱۳). A uni ed ...
  • Chachi, J., Taheri, S. M., & D'Urso, P. (۲۰۲۲). Fuzzy ...
  • Chukhrova, N., & Johannssen, A. (۲۰۱۹). Fuzzy regression analysis: Systematic ...
  • Couso, I., Garrido, L., & Sanchez, L. (۲۰۱۳). Similarity and ...
  • Cox, J. A., Wu, Y., & Davies, A. M. A. ...
  • Diamond, P. (۱۹۸۸). Fuzzy least squares. Information Sciences, ۴۶, ۱۴۱-۱۵۷. ...
  • D'Urso, P., & Chachi, J. (۲۰۲۲). Owa fuzzy regression. International ...
  • D'Urso, P., Chachi, J., Kazemifard, A., & De Giovanni, L. ...
  • Dvorak, A., Jayaram, B., & Stepnicka, M. (۲۰۲۱). Similarity-based reasoning ...
  • . https://doi.org/۱۰.۲۹۹۱/asum.k.۲۱۰۸۲۷.۰۴ ...
  • Feng, Y., Fan, J., & Suykens, J. A. (۲۰۲۰). A ...
  • Fiedler, C., Herty, M., & Trimpe, S. (۲۰۲۴). On kernel-based ...
  • Frost, R., Armstrong, B. C., & Christiansen, M. H. (۲۰۱۹). ...
  • Gorgin, S., Karvandi, M. S., Moghari, S., Fallah, M. K., ...
  • Hesamian, G. (۲۰۱۷). Measuring similarity and ordering based on interval ...
  • Hesamian, G., & Chachi, J. (۲۰۱۷). On similarity measures for ...
  • Hothorn, T. (۲۰۲۳). Cran task view: Machine learning & statistical ...
  • Imam, M., Adam, S., Dev, S., & Nesa, N. (۲۰۲۴). ...
  • Irani, J., Pise, N., & Phatak, M. (۲۰۱۶). Clustering techniques ...
  • James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, ...
  • Kazemifard, A., & Chachi, J. (۲۰۲۲). Madm approach to analyse ...
  • Klement, E. P., Mesiar, R., & Pap, E. (۲۰۰۰). Triangular ...
  • Klir, G., & Yuan, B. (۲۰۰۲). Fuzzy sets and fuzzy ...
  • Li, F., & Shen, Q. (۲۰۲۴). Fuzzy rule-based inference: Advances ...
  • sampling and rule set size on generated fuzzy inference system ...
  • https://doi.org/۱۰.۱۰۰۷/۹۷۸-۳-۶۴۲-۲۳۹۶۰-۱ ۴ ...
  • Mazandarani, M., & Li, X. (۲۰۲۰). Fractional fuzzy inference system: ...
  • Miloudi, S., Wang, Y., & Ding, W. (۲۰۲۱). An improved ...
  • Mouzouris, G., & Mendel, J. (۱۹۹۷). Nonsingleton fuzzy logic systems: ...
  • Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., ...
  • Pattanayak, R. M., Behera, H., & Panigrahi, S. (۲۰۲۱). A ...
  • Scholkopf, B., & Smola, A. J. (۲۰۱۸). Learning with kernels: ...
  • Sharifani, K., & Amini, M. (۲۰۲۳). Machine learning and deep ...
  • Tak, N. (۲۰۲۰). Type-۱ possibilistic fuzzy forecasting functions. Journal of ...
  • Tanaka, H., Uegima, S., & Asai, K. (۱۹۸۲). Linear regression ...
  • Utt, Z., Volya, D., & Mishra, P. (۲۰۲۴). Quantum measurement ...
  • Volosencu, C. (۲۰۲۴). Adaptive neuro-fuzzy inference system as a universal ...
  • Wagner, C., Pourabdollah, A., McCulloch, J., John, R., & Garibaldi, ...
  • Wasantha, P. L. P., Ranjith, P. G., & Viete, D. ...
  • Welch, W. J. (۱۹۸۲). Algorithmic complexity: three np-hard problems in ...
  • Xu, Y., & Zeevi, A. (۲۰۲۴). Towards optimal problem dependent ...
  • Yang, M.-S., & Shih, H.-M. (۲۰۰۱). Cluster analysis based on ...
  • Zadeh, L. A. (۱۹۶۵). Fuzzy sets. Informtion Control, ۸, ۳۳۸-۳۵۳. ...
  • Zeng, W., Liu, Y., Cui, H., Ma, R., & Xu, ...
  • Zhang, T. (۲۰۲۳). Mathematical analysis of machine learning algorithms. CambridgeUniversity ...
  • نمایش کامل مراجع