A Combined Solution of Machine LearningMethods to Improve Botnet Detection
محل انتشار: سومین کنفرانس ملی محاسبات نرم و علوم شناختی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 153
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SCCS03_005
تاریخ نمایه سازی: 15 بهمن 1403
چکیده مقاله:
Nowadays, hackers use a set of infected computers to advance their destructive goals.Therefore, researchers have devoted part of their research in the field of intrusion detectionto the topic of detecting botnets. Despite multiple research efforts in this area, the accuracyof existing methods is not sufficient to provide computer user trust in networks, especiallyin the Internet of Things. In this article, a combined solution of Support Vector Machine,Random Forest, and Adaptive Boosting, all of which are machine learning methods, isproposed to improve the accuracy of bot detection systems. In this solution, after applyingmachine learning methods to the dataset, the best parameters for detection are selected.The results of the conducted experiments show an accuracy of ۹۹.۹۹% for the Bot-IoTdataset and ۹۹.۹۹% for the IoTID۲۰ dataset. Additionally, for comparison with previousworks, an accuracy of ۹۹.۹۲% has been achieved for the CTU-۱۳ dataset. In conclusion, itis evident that by utilizing a combined machine learning-based approach, very good resultscan be obtained in botnet detection.
کلیدواژه ها:
نویسندگان
Aliakbar Tajari Siahmarzkooh
Department of Computer Sciences, Golestan University, Gorgan, Iran;
Mohammadhasan Miri
Department of Electrical Engineering, Golestan University, Gorgan, Iran;