Improving Object Detection Performance through YOLOv۸: AComprehensive Training and Evaluation Study
محل انتشار: سومین کنفرانس ملی محاسبات نرم و علوم شناختی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 116
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SCCS03_003
تاریخ نمایه سازی: 15 بهمن 1403
چکیده مقاله:
This study evaluated the performance of a YOLOv۸-based segmentation model fordetecting and segmenting wrinkles in facial images. The model's performance wasassessed using standard metrics, including Precision (P), Recall (R), and mean AveragePrecision (mAP) at thresholds of ۰.۵۰ (mAP۵۰) and ۰.۵۰–۰.۹۵ (mAP۵۰-۹۵), as well asMask Precision and Mask Recall to evaluate segmentation quality. The model was testedon a validation dataset of ۱۳۱ images, yielding a Precision of ۹۰.۷%, Recall of ۸۹.۱%,mAP۵۰ of ۸۷.۰%, and mAP۵۰-۹۵ of ۱۰.۲%. For segmentation, Mask Precision was ۸۰.۷%and Mask Recall was ۸۹.۱%. The model performed best in detecting forehead wrinkles,with a Precision of ۸۵.۰%, Recall of ۸۰.۷%, and mAP۵۰ of ۸۵.۷%. Detection of frownlines showed lower performance with a Precision of ۸۰.۵% and mAP۵۰ of ۸۱.۶%. Generalwrinkle detection achieved a Precision of ۸۸.۶%, but with a lower Recall (۸۱.۸%) andmAP۵۰ (۸۳.۷%). Although the model demonstrated strong localization and segmentationcapabilities, challenges were observed in detecting subtle wrinkles and handling complexlighting or overlapping features, resulting in false positives and under-segmentation insome cases.
کلیدواژه ها:
نویسندگان
Rana Poureskandar
Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
Shiva Razzagzadeh
Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran;