Acquiring the Coordinates for the Welding Seam through the Utilization of Point Cloud and Welding Map
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 182
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-4_007
تاریخ نمایه سازی: 11 بهمن 1403
چکیده مقاله:
This paper presents an accurate and efficient method for determining the coordinates of welding seams, addressing a significant challenge in the deployment of welding robots for complex tasks. Despite welding robots’ precision in following predetermined paths, they struggle with seam identification due to noisy industrial environments, stringent accuracy requirements, and computational complexity. Unlike existing approaches, which either rely on random sampling or are limited to simple geometries, our method combines splicing techniques with welding map alignment to handle complex shapes with multiple seams. This research employs a weighed method to integrate point clouds captured by RGB-D cameras, producing a low-noise point cloud. By leveraging the welding map of parts drawn, the method identifies probable regions for weld seams within the point cloud, substantially reducing the search space. This enables the system to find the weld seam in a timely manner. Knowing the approximate shape of the weld based on the available weld map, an innovative technique is then used to accurately locate the weld seam within these regions. Experimental results on fence-shaped structures in a simulated environment show a mean average error of ۱.۳۰ mm, achieving a ۳۰% improvement in precision and a ۷۷% reduction in computation time compared to the state-of-the-art methods. The approach's ability to accurately identify weld seams in complex shapes, coupled with its computational efficiency, suggests strong potential for real-world application. By leveraging welding maps and robust point cloud processing techniques, the method is designed to handle noise and variability, key challenges in industrial environments.
کلیدواژه ها:
نویسندگان
Shiva Zeymaran
Computer Engineering Department, Yazd University, Yazd, Iran.
Vali Derhami
Computer Engineering Department, Yazd University, Yazd, Iran.
Mehran Mehrandezh
Faculty of Engineering & Applied Science, University of Regina, Saskatchewan, Canada
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :