A Comparative Evaluation of Artificial Intelligence Scoring Versus Human Scoring of EFL Students’ Essays
محل انتشار: فصلنامه آموزش مهارتهای زبان، دوره: 44، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 54
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JTLS-44-1_005
تاریخ نمایه سازی: 6 بهمن 1403
چکیده مقاله:
The evaluation of students' writings and the allocation of scores are traditionally time-intensive and inherently subjective, often resulting in inconsistencies among human raters. Automated essay scoring systems were introduced to address these issues; however, their development has historically been resource-intensive, restricting their application to standardized tests such as TOEFL and IELTS. Consequently, these systems were not readily accessible to educators and learners. Recent advancements in Artificial Intelligence (AI) have expanded the potential of automated scoring systems, enabling them to analyze written texts and assign scores with increased efficiency and versatility. This study aimed to compare the efficacy of an AI-based scoring system, DeepAI, with human evaluators. A quantitative approach, grounded in Corder's (۱۹۷۴) Error Analysis framework, was used to analyze approximately ۲۰۰ essays written by Persian-speaking EFL learners. Paired sample t-tests and Pearson correlation coefficients were employed to assess the congruence between errors identified and scores assigned by the two methods. The findings revealed a moderate correlation between human and AI scores, with AI diagnosing a greater number of errors than human raters. These results underscore the potential of AI in augmenting writing assessment practices while highlighting its pedagogical implications for language instructors and learners, particularly in evaluating the essays of EFL students.
کلیدواژه ها:
نویسندگان
Vahid Reza Mirzaeian
Department of English, Faculty of Literature, Alzahra University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :