A Comparative Evaluation of Artificial Intelligence Scoring Versus Human Scoring of EFL Students’ Essays

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 54

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JTLS-44-1_005

تاریخ نمایه سازی: 6 بهمن 1403

چکیده مقاله:

The evaluation of students' writings and the allocation of scores are traditionally time-intensive and inherently subjective, often resulting in inconsistencies among human raters. Automated essay scoring systems were introduced to address these issues; however, their development has historically been resource-intensive, restricting their application to standardized tests such as TOEFL and IELTS. Consequently, these systems were not readily accessible to educators and learners. Recent advancements in Artificial Intelligence (AI) have expanded the potential of automated scoring systems, enabling them to analyze written texts and assign scores with increased efficiency and versatility. This study aimed to compare the efficacy of an AI-based scoring system, DeepAI, with human evaluators. A quantitative approach, grounded in Corder's (۱۹۷۴) Error Analysis framework, was used to analyze approximately ۲۰۰ essays written by Persian-speaking EFL learners. Paired sample t-tests and Pearson correlation coefficients were employed to assess the congruence between errors identified and scores assigned by the two methods. The findings revealed a moderate correlation between human and AI scores, with AI diagnosing a greater number of errors than human raters. These results underscore the potential of AI in augmenting writing assessment practices while highlighting its pedagogical implications for language instructors and learners, particularly in evaluating the essays of EFL students.

نویسندگان

Vahid Reza Mirzaeian

Department of English, Faculty of Literature, Alzahra University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Al-Ahdal, A. (۲۰۲۰). Using computer software as a tool of ...
  • Attali, Y. (۲۰۱۶). A comparison of newly-trained and experienced raters ...
  • Barkaoui, K. (۲۰۱۰a). Do ESL essay raters’ evaluation criteria change ...
  • Chen, C., Cheng, Y., & Huang, H. (۲۰۲۰). The impact ...
  • Chukharev-Hudilainen, E., & Saricaoglu, A. (۲۰۱۶). Causal discourse analyzer: Improving ...
  • Corder, S. P. (۱۹۸۱). Error analysis and interlanguage. Oxford University ...
  • Cotos, E. (۲۰۱۵). Automated writing analysis for writing pedagogy. Writing ...
  • Farangi, M. R., & Zabbah, M. (۲۰۲۳). Intelligent scoring in ...
  • Higgins, J. J. (۱۹۸۳). Computer-assisted language learning. Language Teaching, ۱۶(۲), ...
  • Huang, S. J. (۲۰۰۱). Error analysis and teaching composition [Unpublished ...
  • Huang, S. J. (۲۰۱۴). Automated versus human scoring: A case ...
  • Landauer, T. K., Laham, D., & Foltz, P. W. (۲۰۰۳). ...
  • Li, J., Link, S., & Hegelheimer, V. (۲۰۱۵). Rethinking the ...
  • Nova, M. (۲۰۱۸). Utilizing Grammarly in evaluating academic writing: A ...
  • Ranalli, J. (۲۰۱۸). Automated written corrective feedback: How well can ...
  • Shermis, M. D., & Hamner, B. (۲۰۱۲). Contrasting state-of-the-art essay ...
  • Shermis, M. D. (۲۰۱۴). State-of-the-art automated essay scoring: Competition, results, ...
  • Sparks, J. R., Song, Y., Brantley, W., & Liu, O. ...
  • نمایش کامل مراجع