IAdvancing Physics-Informed Neural Networks for ۱D Wave Equation Velocity Inversion
محل انتشار: بیست و یکمین کنفرانس ژئوفیزیک ایران
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 125
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
GCI21_202
تاریخ نمایه سازی: 1 بهمن 1403
چکیده مقاله:
Physics-informed neural networks (PINNs) offer a promising framework for solving inverse problems involving partial differential equations (PDEs). However, the vanilla PINN often fails in complex cases due to inadequate convergence in training. This work focuses on enhancing PINNs for velocity inversion in the ۱D wave equation, emphasizing variable velocity cases. By leveraging modifications in loss calculation—including a logarithmic LossPDE (Loss term responsible to incorporate physics) and sigmoidal self-adaptive regularization—we demonstrate significant improvements in accuracy and stability. We systematically explore cases involving standing waves, constant velocities, and variable velocities, highlighting the efficacy of our approach. The methodological distinctions between constant and variable velocity settings are elaborated upon, ensuring a robust scientific contribution. Our findings underscore the importance of effective loss-balancing mechanisms and their role in advancing PINN applications in wave mechanics.
کلیدواژه ها:
نویسندگان
Hossein Nosrati
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
Mohammad Emami Niri
Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran ,Tehran, Iran