Solving initial value problems using multilayer perceptron artificial neural networks

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 153

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-13-1_002

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

This research introduces a novel approach using artificial neural networks (ANNs) to tackle ordinary differential equations (ODEs) through an innovative technique called enhanced back-propagation (EBP). The ANNs adopted in this study, particularly multilayer perceptron neural networks (MLPNNs), are equipped with tunable parameters such as weights and biases. The utilization of MLPNNs with universal approximation capabilities proves to be advantageous for ODE problem solving. By leveraging the enhanced back-propagation algorithm, the network is fine-tuned to minimize errors during unsupervised learning sessions. To showcase the effectiveness of this method, a diverse set of initial value problems for ODEs are solved and the results are compared against analytical solutions and conventional techniques, demonstrating the superior performance of the proposed approach.

نویسندگان

Fatemeh Ahmadkhanpour

Department of Mathematics, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Hossein Kheiri

Department of Applied Mathematics, Faculty of Mathematics, Statistics and Computer Science, University of Tabriz, Tabriz, Iran.

Nima Azarmir

Department of Mathematics, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Farzin Modarres Khiyabani

Department of Mathematics, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.