Unveiling the Landscape of High-Tech Transfer in Industry ۵.۰: A Text Mining Exploration
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 96
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-3_005
تاریخ نمایه سازی: 11 دی 1403
چکیده مقاله:
The international transfer of high technologies plays a pivotal role in the transformation of industries and the transition to Industry ۵.۰ - a paradigm emphasizing human-centric, sustainable, and resilient industrial development. However, this process faces numerous challenges and complexities, necessitating a profound understanding of its key variables and concepts. The present research aimed to identify and analyze these variables in the realm of high technology transfer in Industry ۵.۰. Following a systematic literature review protocol, ۸۴ relevant articles published between ۲۰۱۷ and ۲۰۲۴ were selected based on predefined criteria including relevance to the research topic, publication quality, and citation impact. These articles were analyzed using a comprehensive text mining approach incorporating keyword extraction, sentiment analysis, topic modeling, and concept clustering techniques implemented through Python libraries including NLTK, SpaCy, TextBlob, and Scikit-learn. The results categorize the key variables and concepts into five main clusters: high technologies (including AI, IoT, and robotics), technology transfer mechanisms, Industry ۵.۰ characteristics, implementation challenges (such as cybersecurity risks and high adoption costs) and opportunities (including increased productivity and innovation potential), and regulatory frameworks. These findings unveil various aspects of the technology transfer process, providing insights for stakeholders while highlighting the critical role of human-technology collaboration in Industry ۵.۰. The study's limitations include potential bias from focusing primarily on English-language literature and the inherent constraints of computational text analysis in capturing context-dependent nuances. This research contributes to a deeper understanding of technology transfer dynamics in Industry ۵.۰, offering practical implications for policymaking and implementation strategies.
کلیدواژه ها:
نویسندگان
Arezoo Zamany
Department of Technology Management, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abbas Khamseh
Department of Industrial Management, Karaj Branch, Islamic Azad University, Karaj, Iran.
Sayedjavad Iranbanfard
Department of Management, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :