Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 165

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-4_012

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Efficient regular-frequent pattern mining from sensors-produced data has become a challenge. The large volume of data leads to prolonged runtime, thus delaying vital predictions and decision makings which need an immediate response. So, using big data platforms and parallel algorithms is an appropriate solution. Additionally, an incremental technique is more suitable to mine patterns from big data streams than static methods. This study presents an incremental parallel approach and compact tree structure for extracting regular-frequent patterns from the data of wireless sensor networks. Furthermore, fewer database scans have been performed in an effort to reduce the mining runtime. This study was performed on Intel ۵-day and ۱۰-day datasets with ۶, ۴, and ۲ nodes clusters. The findings show the runtime was improved in all ۳ cluster modes by ۱۴, ۱۸, and ۳۴% for the ۵-day dataset and by ۲۲, ۵۵, and ۸۵% for the ۱۰-day dataset, respectively.

نویسندگان

Sadegh Rahmani-Boldaji

Computer Engineering, Sheikh Bahaei University, Isfahan, Iran.

Mehdi Bateni

Computer Science and Computer Engineering, University of Isfahan, Khansar Campus, Isfahan, Iran.

Mahmood Mortazavi Dehkordi

MSE, University Canada West, Vancouver, Canada.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • W. Gan, J. C.-W. Lin, P. Fournier-Vige, H.-C. Chao, and ...
  • J. Han, M. Kamber, and J. Pei, Data mining: concepts ...
  • S. K. Tanbeer, M. M. Hassan, A. Almogren, M. Zuair, ...
  • "Apache Storm," [Online]. Available: http://storm.apache.org/. [Accessed ۲۶ ۱ ۲۰۲۳] ...
  • K.-M. Yu, J. Zhou, and W. C. Hsiao, "Load balancing ...
  • J. Dean and S. Ghemawat, "MapReduce: simplified data processing on ...
  • M. Rashid, I. Gondal,, and J. Kamruzzaman, "Dependable large scale ...
  • V. M. Nofong, "Discovering productive periodic frequent patterns in transactional ...
  • S. K. Tanbeer, C. Farhan Ahmed, B.-S. Jeong, and Y.-K. ...
  • S. K. Tanbeer, C. Farhan Ahmed, and B.-S. Jeong, "Mining ...
  • S. K. Tanbeer, C. Farhan Ahmed, B.-S. Jeong and Y.-K. ...
  • P. Goyal, J. S. Challa, S. Shrivastava, and N. Goyal, ...
  • Y. Xun, X. Cui, J. Zhang, and Q. Yin, "Incremental ...
  • M. Rashid, R. Karim, B.-S. Jeong, and H.-J. Choi, "Efficient ...
  • M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, "Apriori-based frequent itemset ...
  • M. Riondato, J. A. DeBrabant, R. L. C. Fonseca, and ...
  • S. Aridhi, L. d'Orazio, M. Maddouri, and E. Mephu, "A ...
  • M. A. Bhuiyan and M. Al Hasan, "An iterative MapReduce ...
  • C. K.-S. Leung and Y. Hayduk , "Mining frequent patterns ...
  • Y. Djenouri, A. Belhadi, G. Srivastava, and J. Chun-Wei Lin, ...
  • A. B. Can, M. Zaval, M. Uzun-Per, and M. Aktas ...
  • "Intel Lab Data," [Online]. Available: http://db.csail.mit.edu/labdata/labdata.html. [Accessed ۲۶ ۱ ۲۰۲۳] ...
  • "Frequent Itemset Mining Dataset Repository.," [Online]. Available: http://fimi.ua.ac.be/data/. [Accessed ۲۶ ...
  • "Apache Hadoop," [Online]. Available: https://hadoop.apache.org/. [Accessed ۲۶ ۱ ۲۰۲۳] ...
  • نمایش کامل مراجع