BMLDD: Breast mass lesion detection by using Deep Learning

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 74

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ITCT24_083

تاریخ نمایه سازی: 4 دی 1403

چکیده مقاله:

Early detection of breast cancer can increase treatment efficiency and therefore decline the high rate of moralities inpatients with breast cancers. Computer-aided detection systems can help radiologists to detect breast mass lesions ina faster and more efficient way. This study proposed BMLDD, a new pipeline for breast mass lesion detection by adeep learning method using mam-mographic images. The proposed method uses histogram stretching,morphological operations, color-map, and a CNN with VGG۱۶ architecture as its fundamental steps. This pipelinecan efficiently improve the image condition, remove artifacts, extract breast region from the back-ground, highlightthe differences in images, extracting useful features, and finally detect the breast masses. The performanceevaluation on INbreast mammographic images has shown that BMLDD can yield promising results with ۹۶%Sensitivity, ۹۶% Precision, ۹۶% F۱-score, ۹۶% Accuracy and ۹۹% AUC. Moreover, the comparisons verified thatBMLDD performed better than other state-of-the-art methods. Consequently, BMLDD is an efficient method forbreast mass lesion detection.

کلیدواژه ها:

Breast cancer mass ، lesion detection ، Deep learning ، Morphological operation Mass detection ، Convolutional neural network

نویسندگان

Saeed Saffar Ardabili

PHD candidate of Tabriz University

Nasim Zolfaghari

PHD candidate of Sahand University of Technology

Afshin Ebrahimi

Professor of Electrical Engineering, Sahand University of Technology