Estimation of Soil Organic Carbon in a Small-Scale Loessial Hillslope Using Terrain Derivatives of Northern Iran

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-6-1_005

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

Aims: Soil organic carbon (SOC) is contemplated as a crucial proxy to manage soil quality, conserve natural resources, monitoring CO۲ and preventing soil erosion within the landscape, regional, and global scale. Therefore, the main aims of this study were to (۱) determine the impact of terrain derivatives on the SOC distribution and (۲) compare the different algorithms of topographic wetness index (TWI) calculation for SOC estimation in a small-scale loess hillslope of Toshan area, Golestan province, Iran. (۳) Comparison between multiple linear regression (MLR) and artificial neural networks (ANN) methods for SOC prediction. Materials & Methods: total of ۱۳۵ soil samples were taken in different slope positions, i.e., shoulder (SH), backslope (BS), footslope (FS), and toeslope (TS). Primary and secondary terrain derivatives were calculated using digital elevation model (DEM) with a spatial resolution of ۱۰ m × ۱۰ m. To SOC estimation (dependent variable) was applied two models, i.e., MLR and ANN with terrain derivatives as the independent variables. Findings: The results showed significant differences using Duncan’s test in where TS position had the higher mean value of SOC (۲۵.۹۰ g kg−۱) compared to SH (۵.۰۰ g kg−۱) and BS (۱۲.۷۰ g kg−۱) positions. The present study also revealed which SOC was more correlated with TWIMFD (Multiple-Flow-Direction) and TWIBFD (Biflow-Direction) than TWISFD (Single Flow Direction). The MLR and ANN models were validated by additional samples (۲۵ points) that can be explain ۶۵% and ۷۶% of the total variability of SOC, respectively, in the study area. Conclusion: These results indicated that the use of terrain derivatives is a beneficial method for SOC estimation. In general, an accurate understanding of TWIMFD is needed to better estimate SOC to evaluate soil and ecosystem related effects on global warming of as this hilly region at a larger scale in a future study.

نویسندگان

S. Maleki

Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

F. Khormali

Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

A. Karimi

Department of Soil Science, Ferdowsi University of Mashhad, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Sharma U, Datta M, Sharma V. Soil Fertility, erosion, runoff ...
  • Maleki S, Khormali F, Bagheri Bodaghabadi M, Mohammadi J, Kehl ...
  • Khormali F, Ajami M, Ayoubi Sh, Srinivasarao Ch, Wani SP. ...
  • Nadeu E, Quiñonero-Rubio JM, de Vente J, Boix-Fayos C. The ...
  • Ajami M, Heidari A, Khormali F, Gorji M, Ayoubi Sh. ...
  • Lal R. Soil carbon sequestration impacts on global climate change ...
  • Mokhtari Karchegani P, Ayoubi Sh, Mosaddeghi MR, Honarju N. Soil ...
  • Schwanghart W, Jarmer T. Linking spatial patterns of soil organic ...
  • Bameri A, Khormali F, Kiani F, Dehghani AA. Spatial variability ...
  • Bou Kheir R, Greve MH, Bøcher PK, Greve MB, Larsen ...
  • Bagheri Bodaghabadi M, Martínez-Casasnovas JA, Salehi MH, Mohammadi J, Esfandiarpoor ...
  • Ebrahimi M, Masoodipour AR, Rigi M. Role of soil and ...
  • Nosrati K, Haddadchi A, Zare MR, Shirzadi L. An evaluation ...
  • Mueller TG, Pierce FJ. Soil carbon maps: Enhancing spatial estimates ...
  • Beven KJ, Kirkby MJ. A physically based variable contributing area ...
  • Pei T, Qin C, Zhu A, Yang L, Luo M, ...
  • Ebrahimi M, Safari Sinegani AA, Sarikhani MR, Mohammadi SA. Comparison ...
  • Li X, McCarty GW, Karlen DL, Cambardella CA. Topographic metric ...
  • Parvizi Y, Heshmati M, Gheituri M. Intelligent approaches to analysing ...
  • Mokhtari Karchegani P, Ayoubi Sh, Honarju N, Jalalian A. Predicting ...
  • Mahmoudabadi E, Karimi AR, Haghnia GH, Sepehr A. Digital soil ...
  • Maleki S, Khormali F, Karimi AR. Mapping soil organic matter ...
  • Burt R. Soil survey laboratory method manual. Washington DC: United ...
  • Sorensen R, Zinko U, Seibert J. On the calculation of ...
  • Hass J. Soil moisture modeling using TWI and satellite imagery ...
  • O’Callaghan JF, Mark DM. The extraction of drainage networks from ...
  • Fairfield J, Leymarie P. Drainage networks from grid digital elevation ...
  • Moore ID, Gessler PE, Nielson GA. Soil attributes prediction using ...
  • Haykin SS. Neural networks: A Comprehensive foundation. New York: Macmillan; ...
  • Liu Sh, An N, Yang J, Dong Sh, Wang C, ...
  • Guo PT, Liu HB, Wu W. Spatial prediction of soil ...
  • Xiong X, Grunwald S, Myers DB, Kim J, Harris NB. ...
  • Somaratne S, Seneviratne G, Coomaraswam U. Prediction of soil organic ...
  • Mirzaee S, Ghorbani-Dashtaki S, Mohammadi J, Asadi H, Asadzadeh F. ...
  • Tiwari SK, Saha SK, Kumar S. Prediction modeling and mapping ...
  • Bangroo SA, Najar GR, Rasool A. Effect of altitude and ...
  • نمایش کامل مراجع