Evaluation of a Hierarchical Classification Method and Statistical Comparison with Pixel-Based and Object-Oriented Approaches

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-8-4_003

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

Aims: Producing a land use/land cover map is a fundamental step in different studies. This study aimed to assess the ability of hierarchical, pixel-based and object-oriented classification methods to produce land use/cover maps. Materials & Methods: This study was conducted in the Harat-Marvast basin of Yazd Province, Iran using Landsat imagery of ۲۰۱۶ (paths ۱۶۱ and ۱۶۲, row ۳۹). The hierarchical image classification method was tested for land use/cover mapping. A statistical comparison between three algorithms, namely pixel-based, object-oriented and hierarchical image classification was performed using the McNemar test. An intensive field survey was also accomplished to obtain training and test samples. Findings: The kappa coefficients for pixel-based, hierarchical and object-oriented techniques were ۰.۷۶, ۰.۸۳ and ۰.۹۴, respectively. Results also showed that the performance of SVM and hierarchical algorithms are significantly different with aχ۲f ۱۱۲.۳ which shows the superior performance of the hierarchical algorithm. Conclusion: It was shown that the object-oriented approach performed significantly better than the two above-mentioned methods (χ۲= ۱۴۹.۶). As the computational costs of object-oriented methods are relatively high, the hierarchical algorithm can be suggested when there are limitations in time or computational infrastructures. Therefore, the hierarchical algorithm can be used instead of simple pixel-based algorithms for land use/cover mapping.

نویسندگان

N. Behnia

Department of Arid Lands Management, Faculty of Natural Resources, Yazd University, Yazd, Iran

M. Zare

Department of Arid Lands Management, Faculty of Natural Resources, Yazd University, Yazd, Iran

V. Moosavi

Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran

S.I. Khajeddin

Department of Range and Watershed Management, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Chen W, Xu Q, Zhao K, Zhou X, Li S, ...
  • Elhag AMH, Abubaker Haroun MA, Almaleeh RE. Desertification Assessment, using ...
  • Cetin M. A satellite based assessment of the impact of ...
  • Zhang DD, Zhang L, Zaborovsky V, Xie F, Wu YW, ...
  • Berhane TM, Lane CR, Wu Q, Anenkhonov OA, Chepinoga VV, ...
  • Mohammady M, Moradi H, Zeinivand H, Temme AJAM. A comparison ...
  • Meneguzzo DM, Liknes GC, Nelson MD. Mapping trees outside forests ...
  • Rahman MR, Saha SK. Multi-resolution segmentation for object-based classification and ...
  • Karami A, Khoorani A, Noohegar A, Shamsi SRF, Moosavi V. ...
  • Rozenstein O, Karnieli A. Comparison of methods for land-use classification ...
  • Jobin B, Labrecque S, Grenier M, Falardeau G. Object-based classification ...
  • Hong X, Pradhan B, Xu Ch, Bui DT. Spatial prediction ...
  • Moosavi V, Talebi A, Shirmohammadi B. Producing a landslide inventory ...
  • Zoleikani R, Vahedan Zoej MJ, Mokhtarzadeh M. Comparison of pixel ...
  • Ouyang ZT, Zhang MQ, Xie X, Shen Q, Guo HQ, ...
  • Keyport RN, Oommen T, Martha TR, Sajinkumar KS, Gierke JS. ...
  • Fathizad H, Hakimzadeh Ardakani MA, Taghizadeh Mehrjardi R, Sodaiezadeh H. ...
  • Khiali L, Ienco D, Teisseire M. Object-oriented satellite image time ...
  • Yan Z, Sheng CD, Zhong RH. The Research of Building ...
  • Rasuly A, Naghdifar R, Rasoli M. Monitoring of Caspian Sea ...
  • Yu Q, Gong P, Clinton N, Biging G, Kelly M, ...
  • Hay GJ, Blaschke T, Marceau DJ, Bouchard A. A comparison ...
  • Sothe C, Almeida CM, Liesenberg V, Schimalski MB. Evaluating sentinel-۲ ...
  • Norrisa J, Walker J. Solar and sensor geometry, not vegetation ...
  • Borowik T, Pettorelli N, Sönnichsen L, Jędrzejewska B. Normalized difference ...
  • Zha Y, Gao J, Ni S. Use of normalized difference ...
  • As-Syakur AR, Sandi Adnyana IW, Arthana IW, Nuarsa IW. Enhanced ...
  • Li N, Martin A, Estival R. Heterogeneous information fusion: Combination ...
  • Foody GM. Fully fuzzy supervised classification of land cover from ...
  • Singh A, Bhatia R, Singhrova A. Taxonomy of machine learning ...
  • Wei C, Ke CB, Liang SB, Cao S, Ma HT, ...
  • Moosavi V, Talebi A, Mokhtari MH, Hadian MR. Estimation of ...
  • Petropoulos GP, Kalaitzidis C, Vadrevu KP. Support vector machines and ...
  • Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive ...
  • Belousov AI, Verzakov SA, von Frese J. Applicational aspects of ...
  • Marjanović M, Kovačević M, Bajat B, Voženílek V. Landslide susceptibility ...
  • Blaschke T. Object based image analysis for remote sensing. ISPRS ...
  • Manandhar R, Odeh IOA, Ancev T. Improving the accuracy of ...
  • Brovelli MA, Molinari ME, Hussein E, Chen J, Li R. ...
  • Weih RC, Riggan ND. Object-based classification vs. pixel-based classification: Comparative ...
  • Foody GM. Thematic map comparison: Evaluating the statistical significance of ...
  • Caroline Voisin SA. Bioinformatic and biostatistic methods for DNA methylome ...
  • Xu K. Asymptotically distribution-free statistical test for generalized lorenz curves: ...
  • نمایش کامل مراجع