Application of Maximum Entropy Model and Remote Sensing Technique to predict susceptible areas to dust storms in Isfahan Province, Iran

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 104

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-12-1_003

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

Aims: This study modeled sensitive areas to dust storms in Isfahan province, which is sensitive to successive droughts, and dust storms because of its climatic condition, and proximity to the desert, using meteorological codes related to dust, AOD values, and Maximum Entropy model (MaxEnt). Materials & methods: ۲۰۰ occurrence points of dust were determined using dust meteorological codes and AOD values of MODIS sensor, Terra satellite, (۲۰۱۱-۲۰۲۲). Ten parameters including temperature, rainfall, albedo, altitude, slope, land use, enhanced vegetation index (EVI), normalized difference moisture index (NDMI), normalized difference salinity index (NDSI), and frequency percentage of erosive wind seed were considered dust-predictive factors. Finally, the MaxEnt model was utilized for modeling dust susceptibility. The performance of the model was specified using the AUC value and the importance of each influential factor was identified utilizing the Jackknife test. Findings:  The findings indicated that areas susceptible to dust are mainly bare lands, salt lands, and poor rangeland located mostly in the north, northeast to parts of the east and southeast of the Province, and also the central parts towards the southwest of Isfahan Province. According to the results, the MaxEnt model, with AUC=۰.۷۲, had a good efficiency in modeling susceptible areas to dust storms in Isfahan Province. Conclusion: The major conclusion of this study is that the MaxEnt model had good performance in mapping susceptible areas to dust in Isfahan Province. The results of this research can be useful for decision-makers in identifying the areas prone to dust storms.

کلیدواژه ها:

نویسندگان

Majid Afshari

PhD student , Department of Arid Land Management, Faculty of Natural Resources and Earth Sciences,University of Kashan, Kashan, Iran

Abbasali Vali

Associate Professor, Department of Arid Lands Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.(vali@kashanu.ac.ir)

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alipour N., et al. Synoptic analysis of dust events and ...
  • Pourhashemi S., et al. Determination of Geomorphological and Land Use ...
  • Boali A., Jafari R., Bashari H. Wind erosion estimation and ...
  • Naeimi M., et al. Climatic factors affecting dune mobility in ...
  • Namdari S., et al. Impacts of climate and synoptic fluctuations ...
  • Ghomeshion M., et al. Investigating the effect of land cover ...
  • Akhzari D., et al. Effect of source areas anthropogenic activities ...
  • Darvand S., et al. Comparison of machine learning models to ...
  • Lin X., et al. Machine learning for source identification of ...
  • Rahmati O., et al. Hybridized neural fuzzy ensembles for dust ...
  • Boroughani M., et al. Application of remote sensing techniques and ...
  • Zaker E. A. (۲۰۱۲). Combating with desertification process by an ...
  • Gholami H., et al. Integrated modelling for mapping spatial sources ...
  • Yong M., et al. Impacts of land surface conditions and ...
  • Akhzari D., Pessarakli M., Shayesteh K., Bashir Gonbad M. Effect ...
  • Sohil F., Sohali M.U., Shabbir J. An introduction to statistical ...
  • Woodbury A., Render F., Ulrych T. Practical probabilistic ground‐water modeling. ...
  • Robinson S. Simulation: the practice of model development and use. ...
  • JavanNezhad R., Rezaie M. Modeling the Role of Climate in ...
  • Yesilnacar E. K. The application of computational intelligence to landslide ...
  • Ghohardoust A., Soleimani Sardoo F. Investigating the Effect of Vegetation ...
  • Wang W., et al. Machine learning-based prediction of sand and ...
  • Rahmati O., Pourghasemi H. R., Melesse A. M. Application of ...
  • Siahkamari S., et al. Spatial prediction of flood-susceptible areas using ...
  • Abolhasani A., et al. A new conceptual framework for spatial ...
  • Afshari M., Vali A.A. Effectiveness of Remote Sensing and Machine ...
  • نمایش کامل مراجع