SAPSONAS: Surrogate assisted PSO for Neural Architecture Search

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 160

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELEMECHCONF08_236

تاریخ نمایه سازی: 1 دی 1403

چکیده مقاله:

Recently, to accelerate the search for neural architecture, surrogate-assisted evolutionary algorithms (SAEAs) have been shown to perform well in optimizing computationally complex problems (EOPs ). In this article, the infill criterion is used to make SAEAs effective and also to have a more efficient neural architecture search use network embedding. Architectures with similar structures are closer to each other in the embedding space. Due to the use of the evolutionary algorithm of particle swarm optimization(PSO), the maximum accuracy in the database can be reached in fewer generations. Experiments on three search spaces with different dimensions from NASBench show the superiority of the proposed SAPSONAS method.

نویسندگان

Morteza Yousefi

Department of Electrical Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran

Vahid Mehrdad

Department of Electrical Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran

Mohammad Bagher Dowlatshahi

Department of Electrical Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran