Optimizing Long-Term Production Scheduling in Open Pit Mining under Commodity Price Uncertainty: A Two-Stage Stochastic Programming Approach

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMAE-15-4_018

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

In the context of open pit mining operations, long-term production scheduling faces significant challenges due to inherent uncertainties, particularly in commodity prices. Traditional mathematical models often adopt a single-point estimation strategy for commodity price, leading to suboptimal mine plans and missed production targets. The simultaneous effect of commodity price uncertainty on the cut-off grade and long-term production scheduling is less considered. This paper introduces a novel model for optimizing open pit mine long-term production scheduling under commodity price uncertainty considering a dynamic cut-off grade strategy, based on a two-stage Stochastic Production Programming (SPP) framework. The presented model seeks to identify optimal mining block sequences, maximizing total discounted cash flow while penalizing deviations from production targets. To illustrate the model's efficiency, it was implemented in a copper mine. First, the Geometric Brownian Motion (GBM) model is used to quantify the future commodity price. Then, both deterministic and SPP models were solved using GAMS software. The results showed that the practical NPV obtained from the SPP model is approximately ۳% higher than the DPP model, while all constraints are satisfied.

نویسندگان

Elham Lotfi

Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

Javad Gholamnejad

Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

Mehdi Najafi

Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

Mohammad Sadegh Zamani

Department. of Mathematical Sciences, Yazd University, Yazd, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :