A Robust Concurrent Multi-Agent Deep Reinforcement Learning based Stock Recommender System
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-13-1_018
تاریخ نمایه سازی: 11 آذر 1403
چکیده مقاله:
kground and Objectives: Stock recommender system (SRS) based on deep reinforcement learning (DRL) has garnered significant attention within the financial research community. A robust DRL agent aims to consistently allocate some amount of cash to the combination of high-risk and low-risk stocks with the ultimate objective of maximizing returns and balancing risk. However, existing DRL-based SRSs focus on one or, at most, two sequential trading agents that operate within the same or shared environment, and often make mistakes in volatile or variable market conditions. In this paper, a robust Concurrent Multiagent Deep Reinforcement Learning-based Stock Recommender System (CMSRS) is proposed.Methods: The proposed system introduces a multi-layered architecture that includes feature extraction at the data layer to construct multiple trading environments, so that different feed DRL agents would robustly recommend assets for trading layer. The proposed CMSRS uses a variety of data sources, including Google stock trends, fundamental data and technical indicators along with historical price data, for the selection and recommendation suitable stocks to buy or sell concurrently by multiple agents. To optimize hyperparameters during the validation phase, we employ Sharpe ratio as a risk adjusted return measure. Additionally, we address liquidity requirements by defining a precise reward function that dynamically manages cash reserves. We also penalize the model for failing to maintain a reserve of cash.Results: The empirical results on the real U.S. stock market data show the superiority of our CMSRS, especially in volatile markets and out-of-sample data.Conclusion: The proposed CMSRS demonstrates significant advancements in stock recommendation by effectively leveraging multiple trading agents and diverse data sources. The empirical results underscore its robustness and superior performance, particularly in volatile market conditions. This multi-layered approach not only optimizes returns but also efficiently manages risks and liquidity, offering a compelling solution for dynamic and uncertain financial environments. Future work could further refine the model's adaptability to other market conditions and explore its applicability across different asset classes.
کلیدواژه ها:
نویسندگان
S. Khonsha
Department of Computer Engineering, Zarghan Branch, Islamic Azad University, Zarghan, Iran.
M. Sarram
Computer Engineering Department, Yazd University, Yazd, Iran.
R. Sheikhpour
Department of Computer Engineering, Faculty of Engineering, Ardakan University, P.O. Box ۱۸۴, Ardakan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :