A Robust Concurrent Multi-Agent Deep Reinforcement Learning ‎based Stock Recommender System

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-13-1_018

تاریخ نمایه سازی: 11 آذر 1403

چکیده مقاله:

kground and Objectives: Stock recommender system (SRS) based on deep ‎reinforcement learning (DRL) has garnered significant attention within the ‎financial research community. A robust DRL agent aims to consistently ‎allocate some amount of cash to the combination of high-risk and low-risk ‎stocks with the ultimate objective of maximizing returns and balancing risk. ‎However, existing DRL-based SRSs focus on one or, at most, two sequential ‎trading agents that operate within the same or shared environment, and ‎often make mistakes in volatile or variable market conditions. In this paper, ‎a robust Concurrent Multiagent Deep Reinforcement Learning-based Stock ‎Recommender System (CMSRS) is proposed.‎Methods: The proposed system introduces a multi-layered architecture that ‎includes feature extraction at the data layer to construct multiple trading ‎environments, so that different feed DRL agents would robustly recommend ‎assets for trading layer.‎ The proposed CMSRS uses a variety of data sources, ‎including Google stock trends, fundamental data and technical indicators ‎along with historical price data, for the selection and recommendation ‎suitable stocks to buy or sell concurrently by multiple agents. To optimize ‎hyperparameters during the validation phase, we employ Sharpe ratio as a ‎risk adjusted return measure. Additionally, we address liquidity ‎requirements by defining a precise reward function that dynamically ‎manages cash reserves. We also penalize the model for failing to maintain a ‎reserve of cash.‎Results: The empirical results on the real U.S. stock market data show the ‎superiority of our CMSRS, especially in volatile markets and out-of-sample ‎data.‎Conclusion: The proposed CMSRS demonstrates significant advancements in ‎stock recommendation by effectively leveraging multiple trading agents and ‎diverse data sources. The empirical results underscore its robustness and ‎superior performance, particularly in volatile market conditions. This multi-‎layered approach not only optimizes returns but also efficiently manages ‎risks and liquidity, offering a compelling solution for dynamic and uncertain ‎financial environments. Future work could further refine the model's ‎adaptability to other market conditions and explore its applicability across ‎different asset classes.‎

کلیدواژه ها:

Multi-Agent ، Concurrent Learning ، Deep Reinforcement Learning ، ‎Stock Recommender System ‎

نویسندگان

S. Khonsha

Department of Computer Engineering, Zarghan Branch, Islamic Azad University, Zarghan, Iran.

M. Sarram

Computer Engineering Department, Yazd University, Yazd, Iran. ‎

R. Sheikhpour

Department of Computer Engineering, Faculty of Engineering, Ardakan University, P.O. Box ۱۸۴, Ardakan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Z. Asghar, F. Rahman, F. M. Kundi, S. Ahmad, ...
  • A. A. Ariyo, A. O. Adewumi, C. K. Ayo, "Stock ...
  • Y. Wang, Y. Liu, M. Wang, R. Liu, “LSTM model ...
  • S. Banik, N. Sharma, M. Mangla, S. N. Mohanty, S. ...
  • S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, ...
  • V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. ...
  • D. Silver, A. Huang, C. J. Maddison, A. Guez, L. ...
  • A. R. Azhikodan, A. G. Bhat, M. V. Jadhav, “Stock ...
  • X. Wu, H. Chen, J. Wang, L. Troiano, V. Loia, ...
  • S. Carta, A. Corriga, A. Ferreira, A. S. Podda, D. ...
  • X. Y. Liu, H. Yang, Q. Chen, R. Zhang, L. ...
  • S. Yang, “Deep reinforcement learning for portfolio management,” Knowl. Based Syst., ...
  • ‎[۱۳] C. Ma, J. Zhang, Z. Li, S. Xu, “Multi-agent ...
  • Z. Huang, F. Tanaka, “MSPM: A modularized and scalable multi-agent ...
  • J. Lussange, I. Lazarevich, S. Bourgeois-Gironde, S. Palminteri, B. Gutkin, ...
  • J. Lee, R. Kim, S. W. Yi, J. Kang, “MAPS: ...
  • P. Koratamaddi, K. Wadhwani, M. Gupta, D. S. G. Sanjeevi, ...
  • ‎[۱۸] D. Kwak, S. Choi, W. Chang, “Self-attention based deep ...
  • S. Forouzandeh, K. Berahmand, R. Sheikhpour, Y. Li, “A new ...
  • ‎[۲۰] S. Forouzandeh, M. Rostami, K. Berahmand, R. Sheikhpour, “Health-aware ...
  • M. Nourahmadi, A. Rahimi, H. Sadeqi, “Designing a ‎stock recommender ...
  • B. Yang, T. Liang, J. Xiong, C. Zhong, “Deep reinforcement ...
  • J. Zou, J. Lou, B. Wang, S. Liu, “A novel ...
  • F. F. He, C. T. Chen, S. H. Huang, “A ...
  • S. Singh, V. Goyal, S. Goel, H. C. Taneja, “Deep ...
  • M. Taghian, A. Asadi, R. Safabakhsh, “Learning financial asset-specific trading ...
  • L. K. Felizardo, F. C. L. Paiva, C. de Vita ...
  • R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, ...
  • T. Faturohman, T. Nugraha, “Islamic stock portfolio optimization using deep ...
  • H. Yue, J. Liu, D. Tian, Q. Zhang, “A novel ...
  • A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, ...
  • Y. Shoham, K. Leyton-Brown, “Multiagent systems: Algorithmic, game-theoretic, and logical ...
  • R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. ...
  • S. Khonsha, M. A. Sarram, R. Sheikhpour, “A profitable portfolio ...
  • H. Hu, L. Tang, S. Zhang, H. Wang, “Predicting the ...
  • J. Schulman, F. ‎Wolski, P. Dhariwal, A. Radford, O. Klimov, ...
  • نمایش کامل مراجع