Rings of real measurable functions vanishing at infinity on a measurable space

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JFMT-1-2_001

تاریخ نمایه سازی: 5 آذر 1403

چکیده مقاله:

Let M(X, \mathscr{A}) be the ring of all real measurable functions on a measurable space (X, \mathscr{A}). We show that for every measurable space (X,\mathscr{A}), there exists a T-measurable space (Y,\mathscr{A}^{\prime}) such that M_K(X, \mathscr{A})\cong M_K(Y,\mathscr{A}^{\prime}) and M_{\infty}(X,\mathscr{A})\cong M_{\infty}(Y,\mathscr{A}^{\prime}), where M_K(X,\mathscr{A}) is the ring of real measurable functions f\in M(X, \mathscr{A}) for which coz(f) is a compact element of \mathscr{A}, and M_{\infty}(X,\mathscr{A}) is the ring of real measurable functions vanishing at infinity on (X, \mathscr{A}). Then, we introduce \sigma-compact and locally compact measurable spaces. We prove that a T-measurable space (X, \mathscr{A}) is compact (\sigma-compact) if and only if the set X is finite (at most countable) and \mathscr{A}= \mathcal{P}(X) . Next, we obtain several equivalent conditions for M_{\infty}(X, \mathscr{A}) to be a regular ring. Finally, we show that if (X, \mathscr{A}) is a T-measurable space and M_{\infty}(X, \mathscr{A})\not=\{۰\}, then there exists a locally compact measurable space (Y, \mathscr{A}') such that M_{\infty}(X,\mathscr{A})\cong M_{\infty}(Y,\mathscr{A}^{\prime}) and M_K(X,\mathscr{A})\cong M_K(Y,\mathscr{A}^{\prime}).

نویسندگان

Ali Akbar Estaji

Ali Akbar Estaji, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Ahmad Mahmoudi Darghadam

Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.