Optimizing Product Attributes Leadership Strategy Using GeneticAlgorithm and Deep LearningCase Study : Electric Vehicle Development

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 75

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI08_050

تاریخ نمایه سازی: 28 آبان 1403

چکیده مقاله:

Car manufacturers face challenges in optimizing platform and portfolio management to meetevolving consumer demands and regulatory requirements. This article examines the combineduse of Genetic Algorithms (GAs) and Deep Learning (DL) for optimizing product attributes innext-generation electric vehicles (EVs). By leveraging data science, automakers gain insightsinto consumer preferences and market trends to enhance features like battery life, chargingspeed, safety, and comfort while balancing cost and manufacturability. The proposedframework integrates predictive modeling with evolutionary algorithms to support data-drivendecision-making. This approach fosters competition, customer satisfaction, and innovation inthe automotive sector, enabling manufacturers to create products that align with consumerexpectations and market demands, ultimately enhancing their competitive advantage.

نویسندگان

Rashid Faridnia

PHD Student in System Management, Semnan University, ( Rashid.faridnia@semnan.ac.ir ) and Seniorsystem expert in IKCO (r.faridnia@ikco.ir )

Ali Faridnia

Mechanical Engineering Student at K. N. Toosi University of Technology