A Sharding Blockchain Model for Scalable Trust Management in Social IoT
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 7، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 53
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-7-3_003
تاریخ نمایه سازی: 21 آبان 1403
چکیده مقاله:
Today, the Internet of Things is a widely recognized phenomenon that generates a significant amount of data and connects many devices. Many products are incorporating electronic components to facilitate their integration and interaction with the Internet. Scalable and efficient trust management systems are required to maintain network reliability, considering the increasing number of IoT devices and generated data. In order to enable scalable trust management in social IoT, this paper presents a sharding-based scalable trust management approach that combines social interactions with smart contract functionality. Through the division of transaction state into smaller segments and the enhancement of trust value propagation among connected devices, sharding techniques in blockchain can offer scalable trust management protocols. When implementing the model on the Hyperledger Fabric platform, we carried out a thorough evaluation. The model calculates trust in terms of trust convergence and success rate efficiently. We have conducted several tests to evaluate the scalability of the model. To boost it, we have also implemented the state sharding. We also conducted a study to highlight the advantages of the sharding strategy on the scalability of the model. The results demonstrate that using shards significantly improves trust management capacity on the blockchain. The proposed method demonstrates the potential application of sharding in blockchain-based Trust Management (TM) for scalable trust management in SIoT.
کلیدواژه ها:
نویسندگان
amin rouzbahani
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran
Fattaneh Taghiyareh
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :