Cubic hat-functions approximation for linear and nonlinear fractional integral-differential equations with weakly singular kernels

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 95

فایل این مقاله در 32 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-13-26_009

تاریخ نمایه سازی: 13 آبان 1403

چکیده مقاله:

In the current study, a new numerical algorithm is presented to solve a class of nonlinear fractional integral-differential equations with weakly singular kernels. Cubic hat functions (CHFs) and their properties are introduced for the first time. A new fractional-order operational matrix of integration via CHFs is presented. Utilizing the operational matrices of CHFs, the main problem is transformed into a number of trivariate polynomial equations. Error analysis and the convergence of the proposed method are evaluated, and the convergence rate is addressed. Ultimately, three examples are provided to illustrate the precision and capabilities of this algorithm. The numerical results are presented in some tables and figures.

نویسندگان

H. Ebrahimi

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.

J. Biazar

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdelaty, A.M., Roshdy, M., Said, L.A. and Radwan, A. G. ...
  • Ahmed, S.A., Elzaki, T.M. and Hassan, A.A. Solution of integral ...
  • Al-Ahmad, S., Sulaiman, I.M. and Mamat, M. An efficient modifica-tion ...
  • Amin, R., Shah, K., Asif, M., Khan, I. and Ullah, ...
  • Arsalan Sajjadi, S., Saberi Najafi, H. and Aminikhah, H. A ...
  • Babolian, E. and Mordad, M. A numerical method for solving ...
  • Behera, S. and Ray, S. Saha. An efficient numerical method ...
  • Behera, S. and Ray, S. Saha. On a wavelet-based numerical ...
  • Biazar, J. Solution of systems of integral–differential equations by Ado-mian ...
  • Biazar, J. and Ebrahimi, H. Orthonormal Bernstein polynomials for Volterra ...
  • Biazar, J. and Ebrahimi, H. A numerical algorithm for a ...
  • Biazar, J. and Montazeri, R. Optimal homotopy asymptotic and multi-stage ...
  • Derakhshan, M. A numerical scheme based on the Chebyshev functions ...
  • Du, H., Chen, Z. and Yang, T. A stable least ...
  • Differential transform method: A comprehensive review and analysis [مقاله ژورنالی]
  • Kukreja, V. K. An improvised collocation algorithm with specific end ...
  • Kythe, P.K. and Puri, P. Computational methods for linear integral ...
  • Leitman, M.J. An integro-differential equation for plane waves propa-gating into ...
  • Mirzaee, F. and Hadadiyan, E. Numerical solution of Volterra–Fredholm integral ...
  • Moosavi Noori, S.R. and Taghizadeh, N. Modified differential transform method ...
  • Ndiaye, A. and Mansal, F. Existence and uniqueness results of ...
  • Nemati, S. and Lima, P M. Numerical solution of nonlinear ...
  • Özaltun, G., Konuralp, A. and Gümgüm, S. Gegenbauer wavelet solu-tions ...
  • Podlubny, I. Fractional differential equations, Math. Sci. Eng. ۱۹۸ (۱۹۹۹), ...
  • Qiao L. and Xu, D. A fast ADI orthogonal spline ...
  • Quentin, R., King, J.R., Sallard, E., Fishman, N., Thompson, R., ...
  • Rabbath, C.A. and Corriveau, D. A comparison of piecewise cubic ...
  • Rakshit G. and Rane, A.S. Asymptotic expansion of iterated Galerkin ...
  • Legendre wavelet method combined with the Gauss quadrature rule for numerical solution of fractional integro-differential equations [مقاله ژورنالی]
  • Sabatier, J., Aoun, M., Oustaloup, A., Gregoire, G., Ragot, F. ...
  • Vinagre, B.M. ,Monje, C.A. ,Calderón A.J. and Suárez, J.I. Fractional ...
  • Wang, Y. and Zhu, Li. SCW method for solving the ...
  • Xie, J., Wang, T., Ren, Z., Zhang J. and Quan, ...
  • Yang, Z. Gröbner Bases for Solving Multivariate Polynomial Equations, Computing ...
  • نمایش کامل مراجع