Topic Modeling: Exploring the Processes, Tools, Challenges andApplications
محل انتشار: دومین کنفرانس ملی محاسبات نرم و علوم شناختی
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 137
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SCCS02_010
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
Topic modeling is a data analysis technique that has become increasingly popular in recentyears due to the growing availability of large datasets. It enables researchers to uncoverunderlying themes and topics within large and complex datasets by identifying patternsand relationships among data points. This article provides an overview of the topicmodeling process, including the algorithms used, tools,evaluation metrics, and applicationsacross various fields. It also discusses potential areas for future research, such as theintegration of other machine learning techniques and the incorporation of temporal andcontextual information. Overall, topic modeling represents a powerful tool for data analysisthat has the potential to unlock new insights and understanding in a variety of domains
کلیدواژه ها:
نویسندگان
Kazem Taghandiki
Faculty Member of Department of Computer Engineering, Technical and Vocational University (TVU), Tehran,Iran
Mohammad Mohammadi
Faculty Member of Department of Computer Engineering, Technical and Vocational University (TVU), Tehran,Iran;