Alzheimer's Disease Detection Using MRI Analysis with Recurrent Deep Networks
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 59
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS12_132
تاریخ نمایه سازی: 12 آبان 1403
چکیده مقاله:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that severely affectscognitive function, making early and accurate diagnosis critical for effective treatment. In this study,we propose a deep learning-based method utilizing recurrent neural networks (RNNs) to analyze MRIimages for the early detection of Alzheimer’s disease. Our approach leverages the temporal and spatialdependencies of MRI data, which are key to identifying subtle changes in brain structure associatedwith disease progression. By using a combination of long short-term memory (LSTM) networks andconvolutional neural networks (CNNs), we extract high-level features from MRI sequences and modelthe temporal dynamics of structural changes over time.We evaluate the proposed method on a large dataset of MRI scans, comparing it with traditional machinelearning methods and other deep learning architectures. Our results show that the RNN-based approachachieves superior performance in distinguishing between normal, mild cognitive impairment (MCI),and Alzheimer’s cases. The model demonstrates high accuracy, sensitivity, and specificity,outperforming state-of-the-art methods for MRI-based AD detection. These findings suggest thatincorporating temporal information through recurrent networks can significantly enhance the accuracyof Alzheimer’s diagnosis, offering a promising tool for early intervention and patient management.
کلیدواژه ها:
نویسندگان
Zahra Habibi Coolai
Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
Jamshid Pirgazi
Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
Ali Ghanbari sorkhi
Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran