Hybrid Deep Learning for Wind Turbine Fault Detection
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 159
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CICTC03_009
تاریخ نمایه سازی: 1 آبان 1403
چکیده مقاله:
Wind turbine fault detection is crucial for maintaining efficient and reliable renewable energy systems. This paper introduces a novel hybrid deep learning architecture, LSTM-Attention-CapsNet, which combines Long Short-Term Memory networks, attention mechanisms, and Capsule Networks for time series-based fault detection in wind turbines. Our proposed model achieved unprecedented performance metrics when tested on a wind turbine dataset, attaining ۱ accuracy, F۱ score, precision, and recall. This exceptional performance marks a significant advancement in fault detection capabilities, potentially revolutionizing predictive maintenance strategies in the wind energy sector. Our findings herald a new era in wind turbine fault detection and condition monitoring, promising substantial improvements in the efficiency and reliability of wind energy production
کلیدواژه ها:
نویسندگان
Fatemeh Alavi
Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, Tehran, Iran
Mahdi Sharifzadeh
Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, Tehran, Iran