Hybrid Deep Learning for Wind Turbine Fault Detection

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 159

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CICTC03_009

تاریخ نمایه سازی: 1 آبان 1403

چکیده مقاله:

Wind turbine fault detection is crucial for maintaining efficient and reliable renewable energy systems. This paper introduces a novel hybrid deep learning architecture, LSTM-Attention-CapsNet, which combines Long Short-Term Memory networks, attention mechanisms, and Capsule Networks for time series-based fault detection in wind turbines. Our proposed model achieved unprecedented performance metrics when tested on a wind turbine dataset, attaining ۱ accuracy, F۱ score, precision, and recall. This exceptional performance marks a significant advancement in fault detection capabilities, potentially revolutionizing predictive maintenance strategies in the wind energy sector. Our findings herald a new era in wind turbine fault detection and condition monitoring, promising substantial improvements in the efficiency and reliability of wind energy production

نویسندگان

Fatemeh Alavi

Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, Tehran, Iran

Mahdi Sharifzadeh

Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, Tehran, Iran