Predicting customer churn in the fast-Moving consumer goods segment of the retail industry using deep learning

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMCS-5-3_005

تاریخ نمایه سازی: 26 مهر 1403

چکیده مقاله:

The non-contractual environment, many brands, and substitute products make customer retention relatively tricky in the fast-moving consumer goods market. In addition, there is no such thing as a completely loyal customer, as most buyers purchase from several almost identical brands. If the customer leaves the transaction without notice, the company may need help responding and compensating. Companies should proactively identify potential customers before they leave the deal. Transactional data, readily available in point of sale (POS) systems, provides a wealth of information that can be harnessed to extract customer transactions and analyze their purchase patterns. This offers a robust foundation for predicting and preventing customer churn. This research shows how transactional data features are generated and are essential for predicting customer churn in the fast-moving consumer goods sector of the retail industry. This research presents data concerning the customers of a capillary sales and distribution company in the food industry. We have implemented standard machine learning methods with the available data in this research. However, we have also employed advanced deep-learning techniques to enhance our predictive capabilities. The results and accuracy of these methods, including Convolutional Neural Network (CNN) and Restricted Boltzmann Machine (RBM), have been thoroughly compared, providing a solid basis for our findings.

کلیدواژه ها:

نویسندگان

Moien Mahdi

Department of computer science, Islamic Azad University, Naragh Branch, Iran

Mehdi Jabbari

Department of computer science, Qom university of technology, Qom. Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbasimehr, H., Setak, M., Tarokh, M. J. (۲۰۱۱). A neuro-fuzzy ...
  • Buckinx, W., Baesens, B., Van den Poel, D., Van Kenhove, ...
  • Buckinx, W., Van den Poel, D. (۲۰۰۵). Customer base analysis: ...
  • Burez, J., Van den Poel, D. (۲۰۰۹). Handling class imbalance ...
  • Calciu, M., Crie, D., Micheaux, A. (۲۰۱۵). Recognising dangerous drop ...
  • Cao, J., Yu, X., Zhang, Z. (۲۰۱۵). Integrating OWA and ...
  • Figalist, I., Elsner, C., Bosch, J., Olsson, H. H. (۲۰۱۹). ...
  • Gallo, A. (۲۰۱۴). The value of keeping the right customers. ...
  • GU, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., ...
  • Lipowski, M. M. (۲۰۱۸). Customer churn as a purchasing journey ...
  • Miguéis, V. L., Camanho, A., e Cunha, J. F. (۲۰۱۳). ...
  • Murphy, J. A. (۲۰۰۱). The lifebelt: the definitive guide to ...
  • Saha, S., Saha, C., Haque, M. M., Alam, M. G. ...
  • Sharkas, M., Attallah, O. (۲۰۲۴). Color-CADx: a deep learning approach ...
  • Shoaib, T.: Customers Churn Prediction in Retail Store (۲۰۱۸). https://doi.org/۱۰.۱۳۱۴۰/RG. ...
  • Subramanian, R. S., Yamini, B., Sudha, K., Sivakumar, S. (۲۰۲۴). ...
  • Sulistiani, H., Tjahyanto, A. (۲۰۱۷). Comparative analysis of feature selection ...
  • Sulistiani, H., Tjahyanto, A. (۲۰۱۷). Comparative analysis of feature selection ...
  • Tamaddoni Jahromi, A., Stakhovych, S., Ewing, M. (۲۰۱۷). The impact ...
  • Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., Chatzisavvas, K. C. ...
  • Verbeke, W., Martens, D., Mues, C., Basins, B. (۲۰۱۱). Building ...
  • Vu, V. H. (۲۰۲۴). Predict customer churn using combination deep ...
  • Yadav, B., Indian, A., Meena, G. (۲۰۲۴). Recognizing Off-line Devanagari ...
  • Zhang, N., Ding, S., Zhang, J., Xue, Y. (۲۰۱۸). An ...
  • نمایش کامل مراجع