Modified and Adaptation of SEBAL Methodology for Estimating LSE from LDCM Data: Fars Province, Iran
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 59
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSCIT-5-1_004
تاریخ نمایه سازی: 25 مهر 1403
چکیده مقاله:
Land Surface Emissivity (LSE) is an important intrinsic property of materials which is variable through physical parameters and it is dependent to the Spectral Response Function (SRF) and the effective wavelength of channel. Surface Energy Balance Algorithm for Land (SEBAL) is one of the most widely applied models which is comprised of twenty-five sub-models that calculate different surface variables such as LSE and LST. This algorithm used within ۳-۱۴ μm and ۸-۱۴ μm spectral domain. Obviously, using of the broadband emissivity in one channel instead of the narrowband emissivity lead to large errors on the surface parameters. This study investigates the effects of SRF and effective wavelength on SEBAL-based LSE estimation method, MLSESEBAL, in the narrow domain of TIRS bands of LDCM. For comparison and validation of MLSESEBAL, it compared to three common LSE estimation methods and LSE product of ASTER as a reference, respectively. The results showed that if there is little difference in the effective wavelength between broadband and narrowband, the LSE estimation is almost identical in the non-vegetated area and there is no significant difference, while it is non-negligible in the vegetated area. In contrast, if there is a relatively large difference between the effective wavelength and SRF between them, in this case, areas with vegetation and no vegetation have the same performance and the greatest difference in LSE estimation. Moreover, the validation results of MLSESEBAL method showed that the RMSE of LSE are ۱.۵۹% and ۱.۲۱% in thermal band ۱۰ of the first and second examined scenes, respectively. As well as, for the band ۱۱, the error values are ۱.۵۶% and ۰.۹۸% in the two examined scenes, respectively.
کلیدواژه ها:
نویسندگان
- -
Assistant Professor, Department of Geomatics, University of Tabriz
AbdoReza Safari
Professor, Department of Surveying and Geomatics, University of Tehran, Tehran, Iran
- -
Assistant Professor, Department of Geomatics, Iran University of Science and Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :