Optimizing Route Planning by Leveraging Quantum Computing inDynamic Urban Environments
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 151
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CELCONF03_047
تاریخ نمایه سازی: 25 مهر 1403
چکیده مقاله:
In dynamic urban environments, optimizing route planning for autonomous vehicles poses significantchallenges due to the ever-changing traffic conditions and complex infrastructure. This paper exploresthe application of Quantum Neural Networks (QNNs) to improve route planning by leveraging quantumcomputing principles to enhance the efficiency and precision of navigation systems. QNNs utilizequantum bits (qubits) that can exist in multiple states simultaneously, allowing for parallel processing ofextensive datasets and complex computations beyond the reach of classical neural networks. Weinvestigate various optimization strategies for QNNs, including "Maximizing Qubit Utilization","Reducing Circuit Depth", "Efficient Data Encoding", "Parameter Efficiency", and "OptimizingGradient Calculations", to tackle specific challenges in urban route planning. Our comprehensiveevaluation demonstrates that each strategy provides distinct benefits concerning convergence rate,accuracy, computational efficiency, robustness, scalability, and flexibility. "Circuit Depth Reduction"and "Gradient Optimization" stand out in delivering high accuracy and robustness, which are crucial fordependable route planning. Meanwhile, strategies such as "Qubit Utilization" and "Data Encoding"demonstrate remarkable computational efficiency and scalability, which are crucial for real-timeapplications. Integrating QNNs into route planning algorithms holds the potential to revolutionize urbantransportation systems, making them more efficient, accurate, and scalable, thereby improving overalltransportation and enhancing the quality of life for urban residents.
کلیدواژه ها:
QNNs – Quantum Computing - Route Planning – Optimizing Strategies
نویسندگان
Mahdi Seyfipoor
PhD Student at School of Electrical and Computer Engineering, University of Tehran
MohammadJavad SamiiZafarqandi
Undergraduate Student in Computer Engineering at University of Tehran
Siamak Mohamadi
Associate Professor of Electrical and Computer Engineering, University of Tehran