Unsupervised Short-term Covariate Shift Adaptation for Self-paced BCI
محل انتشار: بیست و یکمین کنفرانس مهندسی برق ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,124
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEE21_635
تاریخ نمایه سازی: 27 مرداد 1392
چکیده مقاله:
one of the major challenges in Brain Computer Interface systems (BCIs) is dealing with non-stationarity in EEG signal. There are two types of nonstationarity in EEG signal: 1)long-term changes related to fatigue, changes in recording conditions or effects of feedback training which is addressed inclassification step and 2) short-term changes related to different mental activities and drifts in slow cortical potentials which can be addressed in the feature extraction step. In this paper we use acovariate shift minimization method to alleviate short-term (single trial) nonstationarity effects of EEG signal and improvethe performance of the self-paced BCIs in detecting foot movement from the continuous EEG signal. The results ofapplying this unsupervised covariate shift minimization with 2 different classifiers, linear discriminant analysis (LDA) and probabilistic classification vector machines (PCVMs) and with two different filtering methods show the considerable improvement in system performance
کلیدواژه ها:
نویسندگان