Deep Learning-based Solutions for Advanced Persistent Threat (APT) Detection

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 104

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CONFIT01_0222

تاریخ نمایه سازی: 4 مهر 1403

چکیده مقاله:

Advanced Persistent Threats (APTs) are among the greatest cyber security threats organizations face today. They involve an attacker leveraging a range of techniques to gain access to and control over an organization’s network infrastructure, often with malicious intent. Traditional defenses such as antivirus and intrusion prevention systems (IPS) have difficulty detecting and responding to APTs due to their polymorphic nature. As a result, deep learning algorithms - which are well-suited to both identifying patterns in data and adapting to changes - have been proposed as a potential solution to the problem. In this article, we review the current state of deep learning-based solutions for APT detection and discuss ways in which they can be improved to better detect these threats. We then provide an overview of two existing deep learning frameworks - Autoencoders and Convolutional Neural Networks (CNNs) - that have been applied to APT detection in the past. Finally, we conclude by discussing future directions for deep learning-based APT detection.

نویسندگان

Abolfazl Omidi

Bachelor Student of Computer Engineering, Poldokhtar Institute of Higher Education, Poldokhtar, Iran

Amirreza Atarian

Bachelor Student of Computer Engineering, Poldokhtar Institute of Higher Education, Poldokhtar, Iran

Milad Davoodifar

Bachelor Student of Computer Engineering, Poldokhtar Institute of Higher Education, Poldokhtar, Iran