Damage Detection of Structures Using Modal Strain Energy with Guyan Reduction Method
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 146
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-8-4_004
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
The subject of structural health monitoring and damage identification of structures at the earliest possible stage has been a noteworthy topic for researchers in the last years. Modal strain energy (MSE) based index is one of the efficient methods which are commonly used for detecting damage in structures. It is also more effective and economical to employ some methods for reducing the degrees of freedom in large-scale structures having a large number of degrees of freedom. The purpose of this study is to identify structural damage via an index based on MSE and reconstructed mode shapes. The Guyan reduction method (GRM) is utilized here to reconstruct the mode shapes. Therefore, in the first step by employing GRM, mode shapes in slave degrees of freedom are estimated by those of master degrees of freedom. In the second step, the modal strain energy based index (MSEBI) is used to find the location of damaged elements. In order to assess the efficiency of the method, two standard examples are considered. Damage is identified with considering complete mode shapes and reconstructed mode shapes, and the results are compared together. The outcomes show that the combination of MSE and GRM can be useful for the structural damage detection, when considering the noise.
کلیدواژه ها:
نویسندگان
Shahin Lale Arefi
Civil Engineering Department, Faculty of Engineering, University of Mohaghegh Ardabili
Amin Gholizad
Faculty of Engineering Department of Civil Engineering
Seyed Mohammad Seyedpoor
Civil Engineering Department, Shomal University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :