A Meshless Method based on Moving Kriging Interpolation for the Numerical Solution of the Transient Flow of Magnetohydrodynamic Fractional Maxwell Fluid Equation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 63

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACM-10-4_015

تاریخ نمایه سازی: 17 شهریور 1403

چکیده مقاله:

Maxwell model is one of the most outstanding and widely used models for the description of viscoelastic materials. In this study, we use an efficient meshfree technique based on the Moving Kriging (MK) interpolation for the numerical solution of Magnetohydrodynamic (MHD) flow of fractional Maxwell fluid. In this scheme to discretize this equation in time and space variables, we use the finite difference method and MK interpolation shape functions, respectively. Also, we calculate the local weak form for every node instead of the computation of the global weak form for the global domain. So, we reduce such problems to a system of algebraic equations. To indicate the efficiency of the present scheme, four examples are discussed in various types of domains and with uniform and nonuniform nodal distribution in ۲D cases. Also, to show the validity of the method in this example, a comparison with a valid method has been made. Moreover, in the last example, the accuracy of our scheme in the ۳D case is illustrated for the fractional telegraph equation.

کلیدواژه ها:

نویسندگان

Ali Habibirad

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

Esmail Hesameddini

Department of Mathematics, Shiraz University of Technology, Shiraz, Iran

Younes Shekari

Department of Mechanical Engineering, Yasouj University, Yasouj, Iran

Mohammad Hossein Heydari

Department of Mathematics, Shiraz University of Technology, Shiraz, Iran

Omid Baghani

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Miller, K.S., Ross, B., An introduction to the fractional calculus ...
  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and applications of ...
  • Magin, R.L., Fractional calculus models of complex dynamics in biological ...
  • Metzler, R., Klafter, J., The restaurant at the end of ...
  • Bagley, R.L., Torvik, P.J., A theoretical basis for the application ...
  • Dehghan, M., Abbaszadeh, M., An efficient technique based on finite ...
  • Dehghan, M., Safarpoor, M., Abbaszadeh, M., Two high-order numerical algorithms ...
  • Jin, B., Lazarov, R., Liu, Y., Zhou, Z., The Galerkin ...
  • Li, Ch., Wang, Zh., The local discontinuous Galerkin finite element ...
  • Liu, Q., Liu, F., Turner, I., Anh, V., Finite element ...
  • Biswal, U., Chakraverty, S., Investigation of Jeffery-Hamel flow for nanofluid ...
  • Pandey, P., Kumar, S., Gómez-Aguilar, J.F., Numerical solution of the ...
  • Ahmad, H., Khan, T.A., Variational iteration algorithm-i with an auxiliary ...
  • Ahmad, H., Variational iteration method with an auxiliary parameter for ...
  • Inc, M., Khan, H., Baleanu, D., Khan, A., Modified variational ...
  • Baseri, A., Abbasbandy, S., Babolian, E., A collocation method for ...
  • Esen, A., Tasbozan, O., Ucar, Y., Yagmurlu, N.M., A B-spline ...
  • Hidayat, M.I.P., Ariwahjoedi, B., Parman, S., B-spline collocation method for ...
  • Nagy, A.M., Numerical solution of time fractional nonlinear Klein-Gordon equation ...
  • Pirkhedri, A., Javadi, H.H.S., Solving the time-fractional diffusion equation via ...
  • Kwak, S., Kim, K., An, K., Jong, G., Yun, J., ...
  • Dehghan, M., Abbaszadeh, M., Mohebbi, A., An implicit RBF meshless ...
  • Salehi, R., A meshless point collocation method for ۲-D multi-term ...
  • Shivanian, E., A new spectral meshless radial point interpolation (SMRPI) ...
  • Shokri, A., Habibirad, A., A moving Kriging-based MLPG method for ...
  • Habibirad, A., Hesameddini, E., Taleei, A., An efficient meshless method ...
  • Habibirad, A., Hesameddini, E., Heydari, M.H., Roohi, R., An efficient ...
  • Bui, B., Saasen, A., Maxey, J., Ozbayoglu, M.E., Miska, S.Z., ...
  • Makarynska, D., Gurevich, B., Behura, J., Batzle, M., Fluid substitution ...
  • Khan, Z., Rasheed, H.U., Islam, S., Noor, S., Khan, I., ...
  • Kumar, N.N., Praveen, B.V.S., Pulsatile Oldroyd-b blood flow dynamics in ...
  • Pérez-Reyes, I., Vargas-Aguilar, R.O., Pérez-Vega, S.B., Ortiz-Pérez, A.S., Applications of ...
  • Chhabra R.P., Richardson, J.F., Non-Newtonian flow and applied rheology: engineering ...
  • Bruce, S.A., Nonlinear Maxwell equations and strong-field electrodynamics, Physica Scripta, ...
  • Wenchang, T., Wenxiao, P., Mingyu, X., A note on unsteady ...
  • Hossain M.E., Islam, M.R., Fluid properties with memorya critical review ...
  • Zhang, Y., Zhao, H., Liu, F., Bai, Y., Analytical and ...
  • Chen, X., Yang, W., Zhang, X., Liu, F., Unsteady boundary ...
  • Chen, X., Ye, Y., Zhang, X., Zheng, L., Lie-group similarity ...
  • Feng, L., Liu, F., Turner, I., Zheng, L., Novel numerical ...
  • Moustafa, E.S., MHD of a fractional viscoelastic fluid in a ...
  • Sheikholeslami, M., New computational approach for exergy and entropy analysis ...
  • Sheikholeslami, M., Numerical approach for MHD Al۲O۳-Water nanofluid transportation inside ...
  • Sheikholeslami, M., Ellahi, R., Three-dimensional mesoscopic simulation of magnetic field ...
  • Kwak, S., Kim, K., An, K., Kim, N., Kim, H., ...
  • Chen, L., Liew, K.M., A local Petrov-Galerkin approach with moving ...
  • Gu, L., Moving Kriging interpolation and element-free Galerkin method, International ...
  • Liang, Q., Dai, B., Zheng B., Wang, L., Numerical solution ...
  • Shivanian, E., Spectral meshless radial point interpolation (SMRPI) method to ...
  • Atluri, S.N., Zhu, T., A new meshless local Petrov-Galerkin (MLPG) ...
  • Wang, T., Zhang, L., Wu, H., Zhang, X., Jin, Y., ...
  • Fasshauer, G.E., Meshfree approximation methods with MATLAB, World Scientific, ۲۰۰۷ ...
  • نمایش کامل مراجع