A New Risk Response Strategy Using Association Rule Mining and Building Information Modeling Capabilities
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 12
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-12_010
تاریخ نمایه سازی: 3 شهریور 1403
چکیده مقاله:
The dynamic and complex nature of the construction industry leads to increased project uncertainty, exposing construction projects to various risks and hazards. Poor risk management can hinder project objectives. Therefore, implementing effective risk management strategies can enhance project quality, safety, and ensure on-time, under-budget completion. This is achievable when the construction industry adopts cutting-edge methods and tools. Building information modeling (BIM) has been widely used to facilitate project risk management due to rapid technological advancements. Given the significance of risk management in construction projects, this study has proposed a novel BIM-based expert system for addressing project risk responses. Data were collected through a questionnaire, and hidden patterns were discovered using SPSS Modeler software (Clementine) through association rule mining. The Apriori algorithm extracted fifty-three top rules from the dataset based on rule evaluation indexes. Subsequently, an expert system was developed using the extracted rules to address project risks. Finally, the expert system was evaluated by five unbiased experts through a questionnaire. This study can serve as a foundation for addressing project risks using BIM and data mining. Subsequent research can apply this method to other construction projects and compare the results with the present study.
کلیدواژه ها:
نویسندگان
M. Yazdanian
Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
M. Mokhlespour Esfahani
Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
M. Sheikhkhoshkar
Université de Lorraine, CNRS, CRAN, Épinal, France
M. Khanzadi
Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :