Selection of Candidates and Formation Damage Advisor with an Expert System

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JGT-8-1_004

تاریخ نمایه سازی: 18 مرداد 1403

چکیده مقاله:

In the lifecycle of an oil well, numerous factors such as pressure drop, partial perforation, turbulent flow, and formation damage can adversely affect its productivity. Identifying and addressing these issues, especially formation damage, is crucial. Acid treatment is commonly used to mitigate such formation damage, thereby enhancing well productivity. Traditionally, the selection of wells for acid treatment and the identification of formation damages have relied on extensive geological and engineering analyses. These conventional methods, while thorough, are time-consuming and involve the examination of complex geochemical, geophysical, and geological data. Accordingly, the current study introduces an expert system designed to streamline these processes. Expert systems, capable of automated and rapid data analysis, offer significant advantages by accelerating decision-making and improving efficiency. The expert system developed in this research demonstrates notable proficiency in processing intricate datasets, thus enhancing productivity and reducing the probability of errors. Its predictive capabilities also enable proactive management of wells. This research employs an expert system to analyze ten wells, identifying six as suitable candidates for acidizing. The system effectively detects potential formation damages in these wells, demonstrating its accuracy in diagnosis and decision-making. The adoption of expert systems in high-uncertainty scenarios requiring precise analysis is promising. Utilizing more routine or standard algorithms and mathematical models, these systems can significantly improve decision-making processes, predictive accuracy, and operational efficiency in oil and gas reservoirs. Improved decision-making is a key benefit as these systems, with comprehensive and analyzed data, enable more informed and effective decisions. In this study, an expert system is developed for selecting wells suitable for acid treatment and diagnosing formation damage types. Of the ten wells analyzed, six were deemed suitable for acid treatment. The system's ability to detect potential formation damages in each well highlights its effectiveness. These systems, employing algorithms and mathematical models for event modeling and prediction, aid in enhanced, faster decision-making processes. The use of expert systems in areas with high uncertainty and the need for precise modeling is valuable, contributing to improved operational efficiency and productivity in the oil and gas sector.

نویسندگان

Ahmad Rigi

MSc of Petroleum Engineering, Abdal Industrial Projects Management Co., MAPSA Technology Center, Tehran, Iran

Mohammad Norouzi Delaviz

MSc of Petroleum Engineering, Abdal Industrial Projects Management Co., MAPSA Technology Center, Tehran, Iran

Saman Jahanbakhshi

Assistant Professor, School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdulmalek, A. S., S. Elkatatny, A. Abdulraheem, M. Mahmoud, Z. ...
  • Abobaker, E. E., A. Elsanoose, F. Khan, M. A. Rahman, ...
  • Braswell, G (۲۰۱۳). "Artificial intelligence comes of age in oil ...
  • Chew, A. K., S. Jiang, W. Zhang, V. M. Zavala ...
  • Furui, K., D. Zhu and A. Hill (۲۰۰۵). "A comprehensive ...
  • Garrouch, A. A. and H. M. Labbabidi (۲۰۰۳). Using fuzzy ...
  • Khurshid, I., E. W. Al-Shalabi and W. Alameri (۲۰۲۰). "Influence ...
  • Liew, C. X., R. Gholami, M. Safari, A. Raza, M. ...
  • Moghadasi, J., M. Jamialahmadi, H. Müller-Steinhagen and A. Sharif (۲۰۰۴). ...
  • Qazvini, S., A. Golkari, A. Azdarpour, R. M. Santos, M. ...
  • Radwan, A. E., D. A. Wood, A. Abudeif, M. Attia, ...
  • Shu, Y. and J. Yan (۲۰۰۸). "Characterization and prevention of ...
  • Tan, Q., L. You, Y. Kang and C. Xu (۲۰۲۱). ...
  • Umoh, G. T. (۲۰۱۹). Candidate well selection for intervention and ...
  • Wang, Z., H. Li, X. Lan, K. Wang, Y. Yang ...
  • Xiong, H., B. M. Robinson and S. Foh (۲۰۰۱). Using ...
  • Xu, C., Y. Kang, Z. You and M. Chen (۲۰۱۶). ...
  • Yildiz, T. (۲۰۰۶). "Assessment of total skin factor in perforated ...
  • Zhang, Z., J. Guo, H. Liang and Y. Liu (۲۰۲۱). ...
  • Zoveidavianpoor, M., A. Samsuri and S. R. Shadizadeh (۲۰۱۲). Development ...
  • نمایش کامل مراجع