The Role of Data Science in Enhancing Project Management Practices: A Case Study in the Pharmaceutical Industry

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 84

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JDA-3-1_001

تاریخ نمایه سازی: 16 مرداد 1403

چکیده مقاله:

Data science is altering the way in which we manage projects, starting from the planning stage through both execution and tracking phases. In this paper, an examination is made into the productivity and efficiency gains in project management due to the use of data science. It uses previous studies, practical samples and latest advancements to show how decisions based on data can influence the results of a project. Besides, there are two instances looked at concerning pharmaceutical projects. It concentrates on such important aspects of project realization as planning, resource allocation, risk management, requirement analysis, among others.Data science is altering the way in which we manage projects, starting from the planning stage through both execution and tracking phases. In this paper, an examination is made into the productivity and efficiency gains in project management due to the use of data science. It uses previous studies, practical samples and latest advancements to show how decisions based on data can influence the results of a project. Besides, there are two instances looked at concerning pharmaceutical projects. It concentrates on such important aspects of project realization as planning, resource allocation, risk management, requirement analysis, among others.

نویسندگان

Seyed Taha Hossein Mortaji *

PhD., Iran University of Science and Technology, Industrial Engineering Department, Tehran, Iran.

Soha Shateri

Ph.D. Candidate, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • • Ahsan, K., Ho, M., & Khan, S. (2013). Recruiting ...
  • • Albahbah, M., Kıvrak, S., & Arslan, G. (2021). Application ...
  • • Aliahmadi, A., Nozari, H., & Ghahremani-Nahr, J. (2022). Big ...
  • • Aminian, V., Nejad, A., Mortaji, S., & Bagherpour, M. ...
  • • Barney, J. (1991). Firm resources and sustained competitive advantage. ...
  • • Caniëls, M. C., & Bakens, R. J. (2012). The ...
  • • Caron, F., Ruggeri, F., & Merli, A. (2013). A ...
  • • Casey, V., & Richardson, I. (2006). Project management within ...
  • • Chaos, E. (2001). Technical report, The Standish Group International. ...
  • • Chipulu, M., Ojiako, U., Marshall, A., Williams, T., Bititci, ...
  • • Crawford, K., & Calo, R. (2016). There is a ...
  • • Davenport, T. H., & Harris, J. G. (2007). Competing ...
  • • El Khatib, M., Beshwari, F., Beshwari, M., & Beshwari, ...
  • • Few, S. (2012). Show Me the Numbers: Designing Tables ...
  • • Filimowicz, M. (2023). Algorithmic Ethics: Algorithms and Society. Taylor ...
  • • Gandomi, A., & Haider, M. (2015). Beyond the hype: ...
  • • Hall, N. G. (2016). Research and teaching opportunities in ...
  • Assessing the effect of the lack of pharmaceutical manufacturing on healthcare provision in Botswana [مقاله ژورنالی]
  • • Kisi, O., & Shiri, J. (2011). Precipitation forecasting using ...
  • • Kubat, M. (2017). An introduction to machine learning. Springer. ...
  • • Leu, S.-S., & Yang, C.-H. (1999). GA-based multicriteria optimal ...
  • • Liu, B. (2022). Sentiment analysis and opinion mining. Springer ...
  • • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, ...
  • • Marr, B. (2015). Big Data: Using SMART big data, ...
  • • Montgomery, D. C. (2019). Introduction to statistical quality control. ...
  • • Mortaji, S. T. H., Bagherpour, M., & Mazdeh, M. ...
  • • Mortaji, S. T. H., Bagherpour, M., & Noori, S. ...
  • • Mortaji, S. T. H., & Hosseinzadeh, M. (2021). A ...
  • Adaptive Project Monitoring and Control with Variable Reviewing Intervals [مقاله ژورنالی]
  • • Mortaji, S. T. H., Noori, S., & Bagherpour, M. ...
  • • Mortaji, S. T. H., Noori, S., Noorossana, R., & ...
  • • Mortaji, S. T. H., Noorossana, R., & Bagherpour, M. ...
  • Harnessing the Power of Business Analytics and Artificial Intelligence: A Roadmap to Data-Driven Success [مقاله ژورنالی]
  • • Murphy, K., Di Ruggiero, E., Upshur, R., Willison, D. ...
  • • Plano Clark, V. L. (2017). Mixed methods research. The ...
  • • Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An ...
  • • Prelevikj, M. (2020). Data Driven Project Management Univerza v ...
  • • Saad, H. M., Chakrabortty, R. K., Elsayed, S., & ...
  • • Taroun, A. (2014). Towards a better modelling and assessment ...
  • • Voigt, P., & Von dem Bussche, A. (2017). The ...
  • • Wauters, M., & Vanhoucke, M. (2014). Support vector machine ...
  • • Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a ...
  • نمایش کامل مراجع