Human fall detection in industrial environment using YOLOv۸ with transfer learning
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 188
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AITIM01_049
تاریخ نمایه سازی: 14 مرداد 1403
چکیده مقاله:
Ensuring worker safety in industrial environments, particularly in high-risk areas like pipe production lines, necessitates reliable fall detection systems. This research introduces a novel two-step model employing the YOLOv۸ framework for real-time fall detection. Initially, a YOLOv۸ model is trained to detect the presence of persons within the production line using annotated video data. Subsequently, a second YOLOv۸ model is trained to classify these detected instances into 'fall' and 'no fall' categories. To optimize real-time performance, a frame-skipping technique is integrated, reducing computational demands while preserving detection accuracy. Furthermore, the system employs a Region of Interest (ROI) approach, focusing on specific hazardous zones where falls are more likely to occur, thereby enhancing the model's efficiency and relevance. Experimental results indicate that the proposed method achieves high precision and recall and F۱ in fall detection, demonstrating its robustness and effectiveness.
کلیدواژه ها:
نویسندگان
Poorya Khorsandy
Khorramshahr University of Marine Science and Technology
Seyed Saeed Hayati
Khorramshahr University of Marine Science and Technology