Fuzzy logic and Takagi-Sugeno Neural-Fuzzy to Deutsche Bank Fraud Transactions

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,739

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ECDC07_069

تاریخ نمایه سازی: 9 تیر 1392

چکیده مقاله:

This article proposes suitable solution to detect fraud via fuzzy logic followed by Neuralfuzzy Takagi-Sugeno training method. In order for the fraud to be detected through fuzzylogic, there should be some rules stemmed from experience of the experts. These rules are expressed through information that could be registered for a given card. To come up with thefuzzy deduction, membership functions needed to be expressed over the specified input range.This issue is one of the problems of fuzzy logic. To solve this problem, fuzzy logics were established and Mamdani deduction engines were utilized as a result of which suitable responses were presented for fraud detection via Neural-fuzzy method. Despite the fact thatthe problem inputs were highly linear, Neural-fuzzy training was able to cope with the problem and present a suitable trained system. In other words, Neural-fuzzy training method is employed in order to optimize the fuzzy logic membership functions based on the data. Outcomes of the Neural-fuzzy training were quite satisfactory and highly precise. Thus, utilizing the research findings, Neural-fuzzy training method is proposed for upgrading fraud detection in the banking system of our country.

نویسندگان

Fatemeh Shafiee Nezhad

Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • 1]D.Westone, N.Adams, D.Hand, C.Whitrow, P.Juszczk :Plastic Card Fraud Detection using ...
  • Group analysis" September, 2007 ...
  • 3]T.P.Bhatla, V .Prabhu, A.Due _ :Unders tanding Credit Card Frauds ...
  • 4]D.Anderson "Debit Card Fraud Detection And Control System" , Card ...
  • Detecting Fraud And Expediting Note Processing" Sep.14, 2006 ...
  • Research "BACOR 05Y Constanta, May 2005, Romania ...
  • 9]S.Varadaraj an, K.Kalyana "System and method for deep interaction modeling ...
  • Second edition 1993-12-15. Organization (in partnership with IEC and ITU) ...
  • massivedata sets, Kluwer Academic ublishers, Norwell, MA, USA, 2002. ...
  • Neural networks in pattern Recognition, University of Paisley, 2002. ...
  • Systems with Applications, 2 _ 07, pp.9-17 ...
  • classifier and data mining criteria for rule prescreening, "Journal of ...
  • Expert Systems with Applications, 2008, pp.1-1 4. ...
  • Fuzzy Systems, " IEEE, 2007, pp.1-7 ...
  • C.Radu "Implementing Electronic Card Payment Systems" Artech House, 2003 ...
  • نمایش کامل مراجع