پیش بینی بقاء بیماران مبتلا به سرطان ریه با استفاده از سیستم استنتاج عصبی- فازی تطبیقی بهبودیافته
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 132
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHBMI-7-1_003
تاریخ نمایه سازی: 9 مرداد 1403
چکیده مقاله:
مقدمه: سرطان ریه منبع اصلی مرگ ومیر برای مردان و زنان در سراسر جهان می باشد. بیماری ریه توسعه و رشد غیرقابل کنترل سلول ها در یک یا هر دو ریه می باشد. تشخیص زودرس سرطان آسان نیست؛ اما اگر سریع تشخیص داده شود، قابل درمان است. هدف از این مطالعه، ساخت مدل بهینه پیش بینی کننده بقاء بیماران مبتلابه سرطان ریه بر اساس ویژگی های بیماران با رویکرد داده کاوی می باشد.
روش: در این مطالعه توصیفی- کاربردی، از الگوریتم سیستم استنتاج عصبی فازی تطبیقیANFIS و الگوریتم بهینه سازی ازدحام ذرات PSO برای پیش بینی بقاء بیماران مبتلابه سرطان ریه استفاده شد. در این مطالعه، از پایگاه داده معتبر برنامه نظارت، اپیدمی شناسی و نتایج نهایی SEER دانشگاه لوییزول آمریکا استفاده شد. برای ارزیابی روش پیشنهادی از معیارهای دقت، صحت، خطا و جذر خطای میانگین مربعات استفاده شد.
نتایج: نتایج نهایی به دست آمده در این مطالعه نشان دهنده برتری روش بهینه سازی ANFIS با الگوریتم PSO نسبت به سایر روش ها، در راستای پیش بینی بقاء بیماران مبتلابه سرطان ریه با متوسط صحت برابر ۹۹/۸۰% برای بقاء یک ساله، ۹۹/۷۴% برای بقاء دوساله و ۹۹/۶۶% برای بقا پنج ساله بر روی مجموعه داده SEER بود.
نتیجه گیری: استفاده از مدل بهینه سازی شده ANFIS با الگوریتم PSO در پیش بینی بقاء بیماران مبتلا به سرطان ریه بسیار قدرتمند است. مدل پیشنهادی نسبت به سایر مدل های مورد مقایسه دارای بیشترین صحت، دقت و کمترین میزان خطا بوده است؛ بنابراین به کارگیری این مدل درزمینه پیش بینی بقا پیشنهاد می شود.
کلیدواژه ها:
نویسندگان
ام البنین عباسی
M.Sc. Student in Computer Engineering, Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran
محمدرضا رمضان پور
Assistant Professor, Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran
ریحانه خورسند
Assistant Professor, Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :