A Two-Stage Method for Diagnosing COVID-۱۹, Leveraging CNN, and Transfer Learning on CT Scan Images
محل انتشار: فصلنامه بین المللی وب پژوهی، دوره: 6، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 189
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-6-2_012
تاریخ نمایه سازی: 24 تیر 1403
چکیده مقاله:
Lung infection represents one of the most perilous indicators of Covid-۱۹. The most efficient diagnostic approach entails the analysis of CT scan images. Utilizing deep learning algorithms and machine vision, computer scientists have devised a method for automated detection of this disease. This study proposes a two-stage approach to identifying lung infection. In the initial stage, image features are extracted through a transfer learning framework employing ResNet۵۰, with the last two layers being fixed. Subsequently, a CNN neural network is constructed for image detection and categorization in the second stage. By employing superior image feature selection and minimizing non-informative features, this proposed method achieves impressive accuracy metrics: ۹۸.۹۹% accuracy, ۹۸.۹۱% sensitivity, and ۹۹.۱۰% specificity. Furthermore, a comparative analysis is conducted between this method and six other architectures (Inception, InceptionResNetV۲, ResNet۱۰۱, ResNet۱۵۲, VGG۱۶, VGG۱۹), with and without transfer learning. The findings demonstrate that the proposed method attains ۹۸% accuracy on test data, without succumbing to overfitting.
کلیدواژه ها:
نویسندگان
touba torabipour
Department of Computer, Yazd Branch, Islamic Azad University, Yazd, Iran;
abolfazl gandomi
Department of Computer, Yazd Branch, Islamic Azad University, Yazd, Iran;
mohammad ghanimi
Department of Computer, Ershad Damavand University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :