DynamicCluStream: An algorithm Based on CluStream to Improve Clustering Quality

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-6-2_007

تاریخ نمایه سازی: 24 تیر 1403

چکیده مقاله:

Data streams are continuous flows of data objects generated at high rates, requiring real-time processing in a single pass. Clustering algorithms play a vital role in analyzing data streams by grouping similar data samples. Among various time windows for evolving streams, the sliding window method gradually moves over the data, focusing on the most recent information and improving clustering accuracy while reducing memory requirements. The development of distributed computing frameworks like Apache Spark has addressed the limitations of traditional tools in processing big data, including data streams. This paper presents the DynamicCluStream algorithm, an enhancement over Spark-CluStream, which employs a two-phase clustering approach with precise clustering of recent data. The algorithm dynamically determines the number of clusters by merging overlapping clusters during the offline phase, resulting in significant improvements in cluster precision. Experimental results show that it performs up to ۴۷ percent better on average in terms of precision on the CoverType dataset and up to ۹۲ percent better on average in terms of precision on the PowerSupply dataset.  Although the algorithm is slower due to data sample removal and cluster integration, its impact is negligible in a distributed environment.

نویسندگان

Sahar Ahsani

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Iran

Morteza Yousef Sanati

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Iran

Muharram Mansoorizadeh

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Zubaroğlu and V. Atalay, "Data stream clustering: a review," ...
  • L. Nguyen, Y. K. Woon and W. K. Ng, "A ...
  • Carnein and H. Trautmann, "Optimizing data stream representation: An extensive ...
  • Mansalis, E. Ntoutsi, N. Pelekis and Y. Theodoridis, "An evaluation ...
  • Wang, Z. Wang, Z. Wu, S. Zhang, X. Shi and ...
  • Tang, B. He, C. Yu, Y. Li and K. Li, ...
  • C. Aggarwal, S. Y. Philip, J. Han and J. Wang, ...
  • Ramzan and M. Ayyaz, "A comprehensive review on data stream ...
  • Zhang, R. Ramakrishnan and M. Livny, "BIRCH: an efficient data ...
  • Cao, M. Estert, W. Qian and A. Zhou, "Density-based clustering ...
  • Karau, A. Konwinski, P. Wendell and M. Zaharia, Learning spark: ...
  • Backhoff and E. Ntoutsi, "Scalable online-offline stream clustering in apache ...
  • Zhang, Z. Qian, S. Shen, J. Shi, S. Wang, "Streaming ...
  • Wang and Q. Sun, "Research on Clustream Algorithm Based on ...
  • Hua, T. Du, S. Qu and G. Mou, "A data ...
  • Sayed, S. Rady, and M. Aref, "Enhancing CluStream algorithm for ...
  • Bagozi, D. Bianchini and V. De Antonellis, "Multi-level and relevance-based ...
  • Huang, X. Li and B. Yuan, "A parallel GPU-based approach ...
  • M. Grua, M. Hoogendoorn, I. Malavolta, P. Lago and A. ...
  • C. Aggarwal, J. Han, J. Wang, P. S. Yu, "A ...
  • Kumar, A. Singh and R. Singh, "An efficient hybrid-clustream algorithm ...
  • Arthur and S. Vassilvitskii, "k-means++: The advantages of careful seeding," ...
  • Faroughi, R. Boostani, H. Tajalizadeh and R. Javidan, "ARD-Stream: An ...
  • Liu, J. He and Y. Chen, "A topic-enhanced dirichlet model ...
  • Gorrab, F. Ben Rejab, and K. Nouira, "Split incremental clustering ...
  • Forresi, M. Francia, E. Gallinucci and M. Golfarelli, "Dynamic Stream ...
  • Zubaroğlu and V. Atalay, "Online embedding and clustering of evolving ...
  • Zhou, F. Cao, W. Qian and C. Jin, "Tracking clusters ...
  • Youn, J. Shim and S. G. Lee, "Efficient data stream ...
  • R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen ...
  • Ahsani, M.Y. Sanati and M. Mansoorizadeh, "Improvement of CluStream algorithm ...
  • نمایش کامل مراجع