Complexity analysis of primal-dual interior-point methods for convex quadratic programming based on a new twice parameterized kernel function
محل انتشار: مجله مدلسازی ریاضی، دوره: 12، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 156
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-2_005
تاریخ نمایه سازی: 18 تیر 1403
چکیده مقاله:
In this paper, we present primal-dual interior-point methods (IPMs) for convex quadratic programming (CQP) based on a new twice parameterized kernel function (KF) with a hyperbolic barrier term. To our knowledge, this is the first KF with a twice parameterized hyperbolic barrier term. By using some conditions and simple analysis, we derive the currently best-known iteration bounds for large- and small-update methods, namely, \textbf{O}\big(\sqrt{n}\log n\log\frac{n}{\epsilon}\big) and \textbf{O}\big(\sqrt{n}\log\frac{n}{\epsilon}\big), respectively, with special choices of the parameters. Finally, some numerical results regarding the practical performance of the new proposed KF are reported.
کلیدواژه ها:
Convex quadratic programming ، kernel function ، Interior-point methods ، Large- and small-update methods
نویسندگان
Youssra Bouhenache
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Wided Chikouche
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Imene Touil
Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, ۱۸۰۰۰ Jijel, Algeria
Sajad Fathi-Hafshejani
Shiraz University of Technology, Fars ۷۱۵۵۷-۱۳۸۷۶, Shiraz, Iran